Effect of intracellular lipid droplets on cytosolic Ca2+ and cell death during ischaemia–reperfusion injury in cardiomyocytes
Ignasi Barba
Laboratorio de Cardiología Experimental, Hospital Universitari Vall d'Hebron, Barcelona, Spain
Search for more papers by this authorLaia Chavarria
Laboratorio de Cardiología Experimental, Hospital Universitari Vall d'Hebron, Barcelona, Spain
Search for more papers by this authorMarisol Ruiz-Meana
Laboratorio de Cardiología Experimental, Hospital Universitari Vall d'Hebron, Barcelona, Spain
Search for more papers by this authorMaribel Mirabet
Laboratorio de Cardiología Experimental, Hospital Universitari Vall d'Hebron, Barcelona, Spain
Search for more papers by this authorEsperanza Agulló
Laboratorio de Cardiología Experimental, Hospital Universitari Vall d'Hebron, Barcelona, Spain
Search for more papers by this authorDavid Garcia-Dorado
Laboratorio de Cardiología Experimental, Hospital Universitari Vall d'Hebron, Barcelona, Spain
Search for more papers by this authorIgnasi Barba
Laboratorio de Cardiología Experimental, Hospital Universitari Vall d'Hebron, Barcelona, Spain
Search for more papers by this authorLaia Chavarria
Laboratorio de Cardiología Experimental, Hospital Universitari Vall d'Hebron, Barcelona, Spain
Search for more papers by this authorMarisol Ruiz-Meana
Laboratorio de Cardiología Experimental, Hospital Universitari Vall d'Hebron, Barcelona, Spain
Search for more papers by this authorMaribel Mirabet
Laboratorio de Cardiología Experimental, Hospital Universitari Vall d'Hebron, Barcelona, Spain
Search for more papers by this authorEsperanza Agulló
Laboratorio de Cardiología Experimental, Hospital Universitari Vall d'Hebron, Barcelona, Spain
Search for more papers by this authorDavid Garcia-Dorado
Laboratorio de Cardiología Experimental, Hospital Universitari Vall d'Hebron, Barcelona, Spain
Search for more papers by this authorAbstract
Lipid droplets (LD) consist of accumulations of triacylglycerols and have been proposed to be markers of ischaemic but viable tissue. Previous studies have described the presence of LD in myocardium surviving an acute coronary occlusion. We investigated whether LD may be protective against cell death secondary to ischaemia–reperfusion injury. The addition of oleate–bovine serum albumin complex to freshly isolated adult rat cardiomyocytes or to HL-1 cells resulted in the accumulation of intracellular LD detectable by fluorescence microscopy, flow cytometry and 1H-nuclear magnetic resonance spectroscopy. Simulated ischaemia–reperfusion of HL-1 cells (respiratory inhibition at pH 6.4 followed by 30 min of reperfusion) resulted in significant cell death (29.7 ± 2.6% of total lactate dehydrogenase release). However, cell death was significantly attenuated in cells containing LD (40% reduction in LDH release compared with control cells, P= 0.02). The magnitude of LD accumulation was inversely correlated (r2= 0.68, P= 0.0003) with cell death. The protection associated with intracellular LD was not a direct effect of the fatty acids used to induce their formation, because oleate added 30 min before ischaemia, during ischaemia or during reperfusion did not form LD and did not protect against cell death. Increasing the concentration of free oleate during reperfusion progressively decreased the protection afforded by LD. HL-1 cells labelled with fluo-4, a Ca2+-sensitive fluorochrome, fluorescence within LD areas increased more throughout simulated ischaemia and reperfusion than in the cytosolic LD-free areas of the same cells. As a consequence, cells with LD showed less cytosolic Ca2+ overload than control cells. These results suggest that LD exert a protective effect during ischaemia–reperfusion by sequestering free fatty acids and Ca2+.
References
- Awonusonu F, Srinivasan S, Strange J, Al-Jumaily W & Bruce MC (1999). Developmental shift in the relative percentages of fibroblast subsets: role of apoptosis postseptation. Am J Physiol Lung Cell Mol Physiol 277, L848–L859.
- Barba I, Cabanas ME & Arus C (1999). The relationship between nuclear magnetic resonance-visible lipids, lipid droplets, and cell proliferation in cultured C6 cells. Cancer Res 59, 1861–1868.
- Barrabes JA, Garcia-Dorado D, Ruiz-Meana M, Piper HM, Solares J, Gonzalez MA, Oliveras J, Herrejon MP & Soler J (1996). Myocardial segment shrinkage during coronary reperfusion in situ. Relation to hypercontracture and myocardial necrosis. Pflugers Arch 431, 519–526.
- Bianchi K, Rimessi A, Prandini A, Szabadkai G & Rizzuto R (2004). Calcium and mitochondria: mechanisms and functions of a troubled relationship. Biochim Biophys Acta 1742, 119–131.
- Bush KT, Lee H & Nagele RG (1992). Lipid droplets of neuroepithelial cells are a major calcium storage site during neural tube formation in chick and mouse embryos. Experientia 48, 516–519.
- Callies R, Sri-Pathmanathan RM, Ferguson DYP & Brindle KM (1993). The appearance of neutral lipid signals in the 1H NMR spectra of a myeloma cell line correlates with the induced formation of cytoplasmic lipid droplets. Mag Res Med 29, 546–550.
- Claycomb WC, Lanson NA Jr, Stallworth BS, Egeland DB, Delcarpio JB, Bahinksy A & Izzo NJ Jr (1998). HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA 95, 2979–2984.
- De Vries JE, Vork MM, Roemen THM, De Jong YF, Clutjens JPM, Van De Vusse GJ & Bilsen M (1997). Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. J Lipid Res 38, 1384–1394.
- Evanochko WT, Reeves RC, Sakai TT, Canby RC & Pohost GM (1987). Proton NMR spectroscopy in myocardial ischemic insult. Mag Res Med 5, 23–31.
- Garcia-Dorado D, Théroux P, Duran JM, Solares J, Alonso J, Sanz E, Munoz R, Elizaga J, Botas J, Fernández-Avilés F, Soriano J & Esteban E (1992). Selective inhibition of the contractile apparatus. A new approach to modification of infarct size, infarct composition, and infarct geometry during coronary artery occlusion and reperfusion. Circulation 85, 1160–1174.
- Greve G, Rotevatn S, Svendby K & Grong K (1990). Early morphologic changes in cat heart muscle cells after acute coronary artery occlusion. Am J Pathol 136, 273–283.
- Hendrickson SC, St Louis JD, Lowe JE & Abdel-aleem S (1997). Free fatty acid metabolism during myocardial ischemia and reperfusion. Mol Cell Biochem 166, 85–94.
- Hernando V, Rieutord A, Brion F & Prognon P (2003). Evidence for lipids-calcium ions interactions using fluorescent probing in paediatric nutrition admixtures. Talanta 60, 543–554.
- Inserte J, Garcia-Dorado D, Hernando V & Soler-Soler J (2005). Calpain-mediated impairment of Na+/K+-ATPase activity during early reperfusion contributes to cell death after myocardial ischemia. Circ Res 97, 465–473.
- Jodalen H, Stangeland L, Grong K, Vik-Mo H & Lekven J (1985). Lipid accumulation in the myocardium during acute regional ischemia in cats. J Mol Cell Cardiol 17, 973–980.
- Kuerschner L, Moessinger C & Thiele C (2008). Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 9, 338–352.
- Ladilov Y, Haffner S, Balser-Schafer C, Maxeiner H & Piper HM (1999). Cardioprotective effects of KB-R7943: a novel inhibitor of the reverse mode of Na+/Ca2+ exchanger. Am J Physiol Heart Circ Physiol 276, H1868–H1876.
- Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L, Ashrafian H, Horowitz J, Frasesr AG, Clarke K & Frenneaux M (2005). Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation 112, 3280–3288.
- Listenberger LL, Han X, Lewin SE, Cases S, Farese RV, Ory DS & Schaffer JE (2003). Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 100, 3077–3082.
- McGavock JM, Victor RG, Unger RH & Szczepaniak LS (2006). Adiposity of the heart, revisited. Ann Intern Med 144, 517–524.
- Madden MC, Van Winkle WB, Vaughn JM, Pohost GM & Wolkowicz PE (1993). Morphometric analysis demonstrates that metabolically active cardiac triglycerides are 1H NMR visible. J Mol Cell Cardiol 25, 587–597.
- Manganas LN, Zhang X, Li Y, Hazel RD, Smith SD, Wagshul ME, Henn F, Benveniste H, Djuric PM, Enikolopov G & Maletic-Savatic M (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science 318, 980–985.
- Mirabet M, Garcia-Dorado D, Ruiz-Meana M, Barrabés JA & Soler-Soler J (2005). Thrombin increases cardiomyocyte acute cell death after ischemia and reperfusion. J Mol Cell Cardiol 39, 277–283.
- Miyazaki S, Fujiwara H, Onodera T, Kihara Y, Matsuda M, Wu D, Nakamura Y, Kumada T, Sasayama S, Kawai C & Hamashima Y (1987). Quantitative analysis of contraction band and coagulation necrosis after ischemia and reperfusion in the porcine heart. Circulation 75, 1074–1082.
- Murphy DJ & Vance J (1999). Mechanisms of lipid-body formation. Trends Biochem Sci 24, 109–115.
- Pérez Y, Laherech H, Cabañas ME, Barnadas R, Sabés M, Rémy C & Arús C (2002). Measurement by nuclear magnetic resonance diffusion of the dimensions of the mobile compartment in C6 cells. Cancer Res 62, 5672–5677.
- Piper HM, Garcia-Dorado D & Ovize M (1998). A fresh look at reperfusion injury. Cardiovasc Res 38, 291–300.
- Quintero M, Cabanas ME & Arús C (2007). A possible cellular explanation for the NMR-visible mobile lipid (ML) changes in cultured C6 glioma cells with growth. Biochim Biophys Acta 1771, 31–44.
- Robenek H, Hofnagel O, Buers I, Robenek MJ, Troyer D & Severs NJ (2006). Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci 119, 4215–4224.
- Robenek H, Robenek MJ, Buers I, Lorkowski S, Hofnagel O, Troyer D & Severs NJ (2005). Lipid droplets gain PAT family proteins by interaction with specialized plasma membrane domains. J Biol Chem 280, 26330–26338.
- Ruiz-Meana M, Abellan A, Miro-Casas E & Garcia-Dorado D (2007). Opening of mitochondrial transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes. Basic Res Cardiol 102, 542–552.
- Ruiz-Meana M, García-Dorado D, González MA, Barrabés JA & Soler-Soler J (1995). Effect of osmotic stress on sarcolemmal integrity of isolated cardiomyocytes following transient metabolic inhibition. Cardiovasc Res 30, 64–69.
- Ruiz-Meana M, Garcia-Dorado D, Miró-Casas E, Abellán A & Soler-Soler J (2006). Mitochondrial Ca2+ uptake during simulated ischemia does not affect permeability transition pore opening upon simulated reperfusion. Cardiovasc Res 71, 715–724.
- Ruiz-Meana M, Pina P, Garcia-Dorado D, Rodríguez-Sinovas A, Barba I, Miró-Casas E, Mirabet M & Soler-Soler J (2004). Glycine protects cardiomyocytes against lethal reperfusion injury by inhibiting mitochondrial permeability transition. J Physiol 558, 873–882.
- Sarri E, Garcia-Dorado D, Abellan A & Soler-Soler J (2006). Effect of hypoxia, glucose deprivation and acidosis on phosphatidilcholine synthesis in HL-1 cardiomyocytes. CTP:phosphocholine cytidylyltransferase activity correlates with sarcolemal disruption. Biochem J 394, 325–334.
- Schaffer JE (2003). Lipotoxicity: when tissues overeat. Curr Opin Lipidol 14, 281–287.
- Siegmund B, Koop A, Klietz T, Schwartz P & Piper HM (1990). Sarcolemmal integrity and metabolic competence of cardiomyocytes under anoxia-reoxygenation. Am J Physiol Heart Circ Physiol 258, H285–H291.
- Straeter-Knowlen IM, Evanochko WT, Den Hollander JA, Wolkowicz PE, Balschi JA, Caulfield JB, Ku DD & Pohost GM (1996). 1H NMR spectroscopic imaging of myocardial triglycerides in excised dog hearts subjected to 24 hours of coronary occlusion. Circulation 93, 1464–1470.
- Suzuki J, Shen W-J, Nelson BD, Patel S, Veerkamp JH, Selwood SP, Murphy GM, Reaven E & Kramer FB (2001). Absence of cardiac lipid accumulation in transgenic mice with heart-specific HSL overexpresion. Am J Physiol Endocrinol Metab 281, E857–E866.
- Wieckowiski MR, Brdiczka D & Wojtczak L (2000). Long-chain fatty acids promote opening of the reconstituted mitochondrial permeability transition pore. FEBS Lett 484, 61–64.
- Wieckowiski MR & Wojtczak L (1998). Fatty acid-induced uncoupling of oxidative phosphorylation is partly due to the opening of the mitochondrial permeability transition pore. FEBS Lett 423, 339–342.
- Wojtczak L & Schonfeld P (1993). Effect of fatty acids on energy coupling processes in mitochondria. Biochim Biophys Acta 1183, 41–57.