Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells
Hua Hu
Institute of Physiology, University of Oslo, PB 1103 Blindern, 0317 Oslo, Norway
Search for more papers by this authorKoen Vervaeke
Institute of Physiology, University of Oslo, PB 1103 Blindern, 0317 Oslo, Norway
Search for more papers by this authorCorresponding Author
Johan F. Storm
Institute of Physiology, University of Oslo, PB 1103 Blindern, 0317 Oslo, Norway
Corresponding author J. F. Storm: Institute of Physiology, University of Oslo, PB 1103 Blindern, 0317 Oslo, Norway. Email: [email protected]Search for more papers by this authorHua Hu
Institute of Physiology, University of Oslo, PB 1103 Blindern, 0317 Oslo, Norway
Search for more papers by this authorKoen Vervaeke
Institute of Physiology, University of Oslo, PB 1103 Blindern, 0317 Oslo, Norway
Search for more papers by this authorCorresponding Author
Johan F. Storm
Institute of Physiology, University of Oslo, PB 1103 Blindern, 0317 Oslo, Norway
Corresponding author J. F. Storm: Institute of Physiology, University of Oslo, PB 1103 Blindern, 0317 Oslo, Norway. Email: [email protected]Search for more papers by this authorAbstract
Coherent network oscillations in the brain are correlated with different behavioural states. Intrinsic resonance properties of neurons provide a basis for such oscillations. In the hippocampus, CA1 pyramidal neurons show resonance at theta (θ) frequencies (2-7 Hz). To study the mechanisms underlying θ-resonance, we performed whole-cell recordings from CA1 pyramidal cells (n= 73) in rat hippocampal slices. Oscillating current injections at different frequencies (ZAP protocol), revealed clear resonance with peak impedance at 2-5 Hz at ≈33 °C (increasing to ≈7 Hz at ≈38 °C). The θ-resonance showed a U-shaped voltage dependence, being strong at subthreshold, depolarized (≈-60 mV) and hyperpolarized (≈-80 mV) potentials, but weaker near the resting potential (-72 mV). Voltage clamp experiments revealed three non-inactivating currents operating in the subthresold voltage range: (1) M-current (IM), which activated positive to -65 mV and was blocked by the M/KCNQ channel blocker XE991 (10 μm); (2) h-current (Ih), which activated negative to -65 mV and was blocked by the h/HCN channel blocker ZD7288 (10 μm); and (3) a persistent Na+ current (INaP), which activated positive to -65 mV and was blocked by tetrodotoxin (TTX, 1 μm). In current clamp, XE991 or TTX suppressed the resonance at depolarized, but not hyperpolarized membrane potentials, whereas ZD7288 abolished the resonance only at hyperpolarized potentials. We conclude that these cells show two forms of θ-resonance: ‘M-resonance’ generated by the M-current and persistent Na+ current in depolarized cells, and ‘H-resonance’ generated by the h-current in hyperpolarized cells. Computer simulations supported this interpretation. These results suggest a novel function for M/KCNQ channels in the brain: to facilitate neuronal resonance and network oscillations in cortical neurons, thus providing a basis for an oscillation-based neural code.
References
- Alonso, A. & Klink, R. (1993). Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. Journal of Neurophysiology 70, 128–143.
- Alonso, A. & Llinas, R. R. (1989). Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342, 175–177.
- Alzheimer, C., Schwindt, P. C. & Crill, W. E. (1993). Modal gating of Na+ channels as a mechanism of persistent Na+ current in pyramidal neurons from rat and cat sensorimotor cortex. Journal of Neuroscience 13, 660–673.
- Bibbig, A., Faulkner, H. J., Whittington, M. A. & Traub, R. D. (2001). Self-organized synaptic plasticity contributes to the shaping of gamma and beta oscillations in vitro. Journal of Neuroscience 21, 9053–9067.
- Bland, B. H. (1986). The physiology and pharmacology of hippocampal formation theta rhythms. Progress in Neurobiology 26, 1–54.
- Borg-Graham, L. (1991). Modelling the non-linear conductances of excitable membranes. In Cellular Neurobiology: A Practical Approach, ed. J. Chad & H. Wheal, pp. 247–275. IRL Press at Oxford University Press, Oxford .
- Borg-Graham, L. (1999). Interpretations of data and mechanisms for hippocampal pyramidal cell models. In Cerebral Cortex, vol. 13, Cortical Models, ed. P. S. Ulinski, E. G. Jones & A. Peters, Plenum Press, New York .
-
Brown, D. A. (1988). M currents. In
Ion Channels, vol. 1, ed.
T. Narahashi, pp.
55–99. Plenum Press,
New York
.
10.1007/978-1-4615-7302-9_2 Google Scholar
- Brown, D. A. & Adams, P. R. (1980). Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283, 673–676.
- Brown, D. A., Gahwiler, B. H., Griffith, W. H. & Halliwell, J. V. (1990). Membrane currents in hippocampal neurons. Progress in Brain Research 83, 141–160.
- Buzsaki, G. (2002). Theta oscillations in the hippocampus. Neuron 33, 325–340.
- Buzsaki, G., Leung, L.-W. S. & Vanderwolf, C. H. (1983). Cellular basis of hippocampal EEG in the behaving rat. Brain Research Reviews 6, 139–171.
- Charpak, S., Gahwiler, B. H., Do, K. Q. & Knopfel, T. (1990). Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature 347, 765–767.
- Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O. & Somogyi, P. (1995). Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78.
- Cooper, E. C., Aldape, K. D., Abosch, A., Barbaro, N. M., Berger, M. S., Peacock, W. S., Jan, Y. N. & Jan, L. Y. (2000). Colocalization and coassembly of two human brain M-type potassium channel subunits that are mutated in epilepsy. Proceedings of the National Academy of Sciences of the USA 97, 4914–4919.
- Cooper, E. C., Harrington, E., Jan, Y. N. & Jan, L. Y. (2001). M channel KCNQ2 subunits are localized to key sites for control of neuronal network oscillations and synchronization in mouse brain. Journal of Neuroscience 21, 9529–9540.
- Crill, W. E. (1996). Persistent sodium current in mammalian central neurons. Annual Review of Physiology 58, 349–362.
- Czurko, A., Hirase, H., Csicsvari, J. & Buzsaki, G. (1999). Sustained activation of hippocampal pyramidal cells by ‘space clamping’ in a running wheel. European Journal of Neuroscience 11, 344–352.
- D'Angelo, E., Nieus, T. Maffei, A., Rossi, S. A. P., Saglietti, V., Fontana, A. & Naldi, G. (2001). Theta-frequency bursting and resonance in cerebellar granule cells: experimental and modeling of a slow-K+-dependent mechanism. Journal of Neuroscience 21, 759–770.
- Denham, M. J. & Borisyuk, R. M. (2000). A model of theta rhythm production in the septal-hippocampal system and its modulation by ascending brain stem pathways. Hippocampus 10, 698–716.
- Franz, O., Liss, B., Neu, A. & Roeper, J. (2000). Single-cell mRNA expression of HCN1 correlates with a fast gating phenotype of hyperpolarization-activated cyclic nucleotide-gated ion channels (Ih) in central neurons. European Journal of Neuroscience 12, 2685–2693.
- French, C. R., Sah, P., Buckett, K. J. & Gage, P. W. (1990). A voltage-dependent persistent sodium current in mammalian hippocampal neurons. Journal of General Physiology 95, 1139–1157.
- Graham, L. (2002). The Surf-Hippo Neuron Simulation System, v3. 0, http://www.cnrs-gif.fr/iaf/iaf9/surf-hippo.html.
- Gutfreund, Y., Yarom, Y. & Segev, I. (1995). Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. Journal of Physiology 483, 621–640.
- Halliwell, J. V. & Adams, P. R. (1982). Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Research 250, 71–92.
-
Harris, N. C. &
Constanti, A. (1995). Mechanism of block by ZD 7288 of the hyperpolarization-activated inward rectifying current in guinea pig substantia nigra neurons in vitro.
Journal of Neurophysiology
74, 2366–2378.
10.1002/(SICI)1096-9861(19970106)377:1<85::AID-CNE8>3.0.CO;2-F CASPubMedWeb of Science®Google Scholar
-
Hille, B. (2001). Ion Channels of Excitable Membranes, 3rd edn.
Sinauer Associates Inc.,
Sunderland,
MA.
10.1111/j.1540-8167.1998.tb01847.x Google Scholar
- Hines, M. (1984). Efficient computation of branched nerve equations. International Journal of Biomedical Computing, 15, 69–76.
- Hopfield, J. J. (1995). Pattern recognition computation using action potential timing for stimulus representation. Nature 376, 33–36.
- Huerta, P. T. & Lisman, J. E. (1993). Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature 364, 723–725.
- Huguenard, J. R., Hamill, O. P. & Prince, D. A. (1988). Developmental changes in Na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component. Journal of Neurophysiology 59, 778–795.
- Hutcheon, B., Miura, R. M. & Puil, E. (1996a). Models of subthreshold membrane resonance in neocortical neurons. Journal of Neurophysiology 76, 698–714.
- Hutcheon, B., Miura, R. M. & Puil, E. (1996b). Subthreshold membrane resonance in neocortical neurons. Journal of Neurophysiology 76, 683–697.
- Hutcheon, B. & Yarom, Y. (2000). Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends in Neurosciences 23, 216–222.
- Jentsch, T. J. (2000). Neuronal KCNQ potassium channels: physiology and role in disease. National Reviews Neuroscience 1, 21–30.
- Jung, R. & Kornmueller, A. E. (1938). Eine Metodik Der Abkitung Lokalisierter Potentialschwankungen Aus Subcorticalen Hirngebieten. Archiv für Psychiatrie und Nervenkrankheiten 109, 1–30.
- Kahana, M. J., Seelig, D. & Madsen, J. R. (2001). Theta returns. Current Opinion in Neurobiology 11, 739–744.
- Kamondi, A., Acsady, L., Wang, X. J. & Buzsaki, G. (1998). Theta oscillation in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8, 244–261.
- Klink, R. & Alonso, A. (1993). Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. Journal of Neurophysiology 70, 144–157.
- Klink, R. & Alonso, A. (1997a). Ionic mechanisms of muscarinic depolarization in entorhinal cortex layer II neurons. Journal of Neurophysiology 77, 1829–1843.
- Klink, R. & Alonso, A. (1997b). Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons. Journal of Neurophysiology 77, 1813–1828.
- Leung, L. S. & Yim, C. Y. (1986). Intracellular records of theta rhythm in hippocampal CA1 cells of the rat. Brain Research 367, 323–327.
- Leung, L. S. & Yu, H. W. (1998). Theta-frequency resonance in hippocampal CA1 neurons in vitro demonstrated by sinusoidal current injection. Journal of Neurophysiology 79, 1592–1596.
- Llinas, R. R. (1988). The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 1654–1664.
- Ludwig, A., Zong, X., Jeglitsch, M., Hofmann, F. & Biel, M. (1998). A family of hyperpolarization-activated mammalian cation channels. Nature 393, 587–591.
- Lüthi, A. & McCormick, D. A. (1998). H-current: properties of a neuronal and network pacemaker. Neuron 21, 9–12.
- Lüthi, A. & McCormick, D. A. (1999). Modulation of a pacemaker current through Ca(2+)-induced stimulation of cAMP production. Nature Neuroscience 2, 634–641.
- Madison, D. V. & Nicoll, R. A. (1986). Actions of noradrenaline recorded intracellularly in rat hippocampal CA1 pyramidal neurones, in vitro. Journal of Physiology 372, 221–244.
- Magee, J. C. (1998). Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. Journal of Neuroscience 18, 7613–7624.
- Mittmann, T., Linton, S. M., Schwindt, P. & Crill, W. (1997). Evidence for persistent Na+ current in apical dendrites of rat neocortical neurons from imaging of Na+-sensitive dye. Journal of Neurophysiology 78, 1188–1192.
- Neuhoff, H., Neu, A., Liss, B. & Roeper, J. (2002). Ih channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. Journal of Neuroscience 22, 1290–1302.
- Nicoll, R. A. (1988). The coupling of neurotransmitter receptors to ion channels in the brain. Science 241, 545–551.
- O'Keefe, J. & Recce, M. L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330.
- Pape, H. C. (1994). Specific bradycardic agents block the hyperpolarization-activated cation current in central neurons. Neuroscience 59, 363–373.
- Pape, H. C. (1996). Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annual Review of Physiology 58, 299–327.
- Pape, H. C. & Driesang, R. B. (1998). Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex. Journal of Neurophysiology 79, 217–226.
- Pedarzani, P. & Storm, J. F. (1995). Protein kinase A-independent modulation of ionchannels in the brain bycyclic AMP. Proceedings of the National Academy of Sciences of the USA 92, 11716–11720.
- Pike, F. G., Goddard, R. S., Suckling, J. M., Ganter, P., Kasthuri, N. & Paulsen, O. (2000). Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents. Journal of Physiology 529, 205–213.
- Puil, E., Gimbarzevsky, B. & Miura, R. M. (1986). Quantification of membrane properties of trigeminal root ganglion neurons in guinea pigs. Journal of Neurophysiology 55, 995–1016.
- Raghavachari, S., Kahana, M. J., Rizzuto, D. S., Caplan, J. B., Kirschen, M. P., Bourgeois, B., Madsen, J. R. & Lisman, J. E. (2001). Gating of human theta oscillations by a working memory task. Journal of Neuroscience 21, 3175–3183.
- Sarnthein, J., Petsche, H., Rappelsberger, P., Shaw, G. L. & von Stein, A. (1998). Synchronization between prefrontal and posterior association cortex during human working memory. Proceedings of the National Academy of Sciences of the USA 95, 7092–7096.
- Schroeder, B. C., Hechenberger, M., Weinreich, F., Kubisch, C. & Jentsch, T. J. (2000). KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents. Journal of Biological Chemistry 275, 24089–24095.
- Shah, M. M., Mistry M., Marsh, S. J., Brown, D. A. & Delmas, P. (2002). Molecular correlate of the M current in cultured rat hippocampal neurons. Journal of Physiology 544, 29–37.
- Shao, L. R., Halvorsrud, R., Borg-Graham, L. & Storm, J. F. (1999). The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells. Journal of Physiology 521, 135–146.
- Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology 55, 349–374.
- Staff, N. P., Jung, H. Y., Thiagarajan, T., Yao, M. & Spruston, N. (2000). Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus. Journal of Neurophysiology 84, 2398–2408.
- Steriade, M., McCormick, D. A. & Sejnowski, T. J. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685.
- Storm, J. F. (1989). An after-hyperpolarization of medium duration in rat hippocampal pyramidal cells. Journal of Physiology 409, 171–190.
- Storm, J. F. (1990). Potassium currents in hippocampal pyramidal cells. Progress in Brain Research 83, 161–187.
- Storm, J. F. (1993). Functional diversity of K+ currents in hippocampal pyramidal neurons. Seminars in the Neurosciences 5, 79–92.
- Storm, J. F., Vervaeke, K., Graham, L. & Hu, H. (2002). M- and H-current contribute to subthreshold electrical resonance at theta frequencies in rat CA1 hippocampal pyramidal cells. Society for Neuroscience Abstracts 28 (in the Press)..
- Storm, J. F. & Hu, H. (2002). M-and H-current contribute to subthreshold electrical resonance at theta frequencies in rat CA1 hippocampal pyramidal cells. FENS Abstracts 1, 451.
-
Storm, J. F.,
Pedarzani, P.,
Haug, T. M. &
Winther, T. (2000). Modulation of K+ channels in hippocampal neurons: transmitters acting via cyclic AMP enhance the excitability through kinase-dependent and -independent modulation of AHP- and h-channels. In
Slow Synaptic Responses and Modulation, ed.
K. Kuba,
H. Higashida,
D. A. Brown &
T. Yoshioka, Springer-Verlag,
Tokyo
.
10.1007/978-4-431-66973-9_11 Google Scholar
- Suckling, J. M., Ganter, P., Kasthuri, N. & Paulsen, O. (2000). The H-current underlies low-frequency resonance in hippocampal CA1 pyramidal cells. Society for Neuroscience Abstracts 26, 2139.
- Tesche, C. D. & Karhu, J. (2000). Theta oscillations index human hippocampal activation during a working memory task. Proceedings of the National Academy of Sciences of the USA 97, 919–924.
- Thompson, S. M. & Wong, R. K. (1991). Development of calcium current subtypes in isolated rat hippocampal pyramidal cells. Journal of Physiology 439, 671–689.
- Traub, R. D., Bibbig, A., Fisahn, A., LeBeau, F. E., Whittington, M. A. & Buhl, E. H. (2000). A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. European Journal of Neuroscience 12, 4093–4106.
- Vanderwolf, C. H. (1988). Cerebral activity and behaviour: control by central cholinergic and serotonergic systems. International Review of Neurobiology 30, 225–340.
- Vinogradova, O. S. (1995). Expression, control, and probable functional significance of the neuronal theta-rhythm. Progress in Neurobiology 45, 523–583.
- Wallenstein, G. V. & Hasselmo, M. E. (1997). GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. Journal of Neurophysiology 78, 393–408.
- Wang, H. S., Pan, Z., Shi, W., Brown, B. S., Wymore, R. S., Cohen, I. S., Dixon, J. E. & McKinnon, D. (1998). KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282, 1890–1893.
- Williamson, A. & Alger, B. E. (1990). Characterization of an early afterhyperpolarization after a brief train of action potentials in rat hippocampal neurons in vitro. Journal of Neurophysiology 63, 72–81.
- Wilson, M. A. & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679.
- Winson, J. (1978). Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 201, 160–163.
- Ylinen, A., Soltesz, I., Bragin, A., Penttonen, M., Sik, A. & Buzsaki, G. (1995). Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus 5, 78–90.