Volume 305, Issue 1 p. 197-213
Research Article
Free to Read

Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices.

First published: 01 August 1980
Citations: 842


1. Intradendritic recordings from Purkinje cells in vitro indicate that white matter stimulation produces large synaptic responses by the activation of the climbing fibre afferent, but antidromic potentials do not actively invade the dendritic tree. 2. Climbing fibre responses may be reversed in a manner similar to that observed at the somatic level. However, the reversal does not show the biphasicity often seen at somatic level. 3. Input resistance of these dendrites was found to range from 15 to 30 M omega. The non-linear properties seen at the somatic level for depolarizing currents are also encountered here. However, there seems to be less anomalous rectification. 4. Detailed analysis of repetitive firing of Purkinje cells elicited by outward DC current shows that, as in the case of the antidromic invasion, the fast somatic potentials (s.s.) do not invade the dendrite actively. However, the dendritic spike bursts (d.s.b.s) interposed between the s.s. potentials are most prominent at dendritic level. 5. Two types of voltage-dependent Ca responses were observed. At low stimulus level a plateau-like depolarization is accompanied by a prominent conductance change; further depolarization produces large dendritic action potentials. These two classes of response are TTX-resistant but are blocked by Cd, Co, Mn or D600, or by the removal of extracellular Ca. 6. Following blockage of the Ca conductance, plateau potentials produced by a non-inactivating Na conductance are observed mainly near the soma indicating that this voltage-dependent conductance is probably associated with the somatic membrane. 7. Spontaneous firing in Purkinje cell dendrites is very similar to that observed at the soma. However, the amplitude of these bursts is larger at dendritic level. It is further concluded that these TTX-insensitive spikes are generated at multiple sites along the dendritic tree. 8. Six ionic conductances seem to be involved in Purkinje cell electroresponsiveness: (a) an inactivating and (b) a non-inactivating Na conductance at or near the soma, (c) a spike- and (d) a plateau-generating Ca conductance, and (e) voltage-dependent and (f) Ca-dependent K currents. 9. The possible role of these conductances in Purkinje cell integration is discussed.