Multiphysics simulations reveal haemodynamic impacts of patient-derived fibrosis-related changes in left atrial tissue mechanics
Corresponding Author
Alejandro Gonzalo
Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
Corresponding author A. Gonzalo: Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA. Email: [email protected]
Search for more papers by this authorChristoph M. Augustin
Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
Search for more papers by this authorSavannah F. Bifulco
Department of Bioengineering, University of Washington, Seattle, WA, USA
Search for more papers by this authorÅshild Telle
Department of Bioengineering, University of Washington, Seattle, WA, USA
Search for more papers by this authorYaacoub Chahine
School of Cardiology, University of Washington, Seattle, WA, USA
Search for more papers by this authorAhmad Kassar
School of Cardiology, University of Washington, Seattle, WA, USA
Search for more papers by this authorManuel Guerrero-Hurtado
Department of Aerospace and Biomedical Engineering, Universidad Carlos III de Madrid, Leganés, Spain
Search for more papers by this authorEduardo Durán
Dept. Ing. Mecánica, Térmica y de Fluidos, Universidad de Málaga, Málaga, Spain
Search for more papers by this authorPablo Martínez-Legazpi
Department of Mathematical and Fluid Physics, UNED, Madrid, Spain
Search for more papers by this authorOscar Flores
Department of Aerospace and Biomedical Engineering, Universidad Carlos III de Madrid, Leganés, Spain
Search for more papers by this authorJavier Bermejo
Hospital General Universitario Gregorio Marañón, Madrid, Spain
Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
Medical School, Complutense University of Madrid, Madrid, Spain
Search for more papers by this authorGernot Plank
Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
BioTechMed-Graz, Graz, Austria
Search for more papers by this authorNazem Akoum
School of Cardiology, University of Washington, Seattle, WA, USA
Search for more papers by this authorPatrick M. Boyle
Department of Bioengineering, University of Washington, Seattle, WA, USA
Search for more papers by this authorJuan C. del Alamo
Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
Search for more papers by this authorCorresponding Author
Alejandro Gonzalo
Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
Corresponding author A. Gonzalo: Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA. Email: [email protected]
Search for more papers by this authorChristoph M. Augustin
Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
Search for more papers by this authorSavannah F. Bifulco
Department of Bioengineering, University of Washington, Seattle, WA, USA
Search for more papers by this authorÅshild Telle
Department of Bioengineering, University of Washington, Seattle, WA, USA
Search for more papers by this authorYaacoub Chahine
School of Cardiology, University of Washington, Seattle, WA, USA
Search for more papers by this authorAhmad Kassar
School of Cardiology, University of Washington, Seattle, WA, USA
Search for more papers by this authorManuel Guerrero-Hurtado
Department of Aerospace and Biomedical Engineering, Universidad Carlos III de Madrid, Leganés, Spain
Search for more papers by this authorEduardo Durán
Dept. Ing. Mecánica, Térmica y de Fluidos, Universidad de Málaga, Málaga, Spain
Search for more papers by this authorPablo Martínez-Legazpi
Department of Mathematical and Fluid Physics, UNED, Madrid, Spain
Search for more papers by this authorOscar Flores
Department of Aerospace and Biomedical Engineering, Universidad Carlos III de Madrid, Leganés, Spain
Search for more papers by this authorJavier Bermejo
Hospital General Universitario Gregorio Marañón, Madrid, Spain
Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
Medical School, Complutense University of Madrid, Madrid, Spain
Search for more papers by this authorGernot Plank
Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
BioTechMed-Graz, Graz, Austria
Search for more papers by this authorNazem Akoum
School of Cardiology, University of Washington, Seattle, WA, USA
Search for more papers by this authorPatrick M. Boyle
Department of Bioengineering, University of Washington, Seattle, WA, USA
Search for more papers by this authorJuan C. del Alamo
Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
Search for more papers by this authorA. Gonzalo and C. M. Augustin contributed equally to this work.
P. M. Boyle and J. C. del Alamo senior authors or principal investigators.
Handling Editors: Natalia Trayanova & Brian Delisle
The peer review history is available in the Supporting Information section of this article (https://doi.org/10.1113/JP287011#support-information-section).
Abstract
Key points
- Left atrial (LA) fibrosis is associated with arrhythmogenesis and increased risk of ischaemic stroke; its extent and pattern can be quantified on a patient-specific basis using late gadolinium enhancement magnetic resonance imaging.
- Current stroke risk prediction tools have limited personalization, and their accuracy could be improved by incorporating patient-specific information such as fibrotic maps and haemodynamic patterns.
- We present the first electro-mechano-fluidic multiphysics computational simulations of LA flow, including fibrosis and anatomies from medical imaging.
- Mechanical changes in fibrotic tissue impair global LA motion, decreasing LA and left atrial appendage (LAA) emptying fractions, especially in subjects with higher fibrosis burdens.
- Fibrotic-mediated LA motion impairment alters LA and LAA flow near the endocardium and the whole cavity, ultimately leading to more stagnant blood regions in the LAA.
Open Research
Data availability statement
The original contributions presented in the study are included in Results and supplementary information. Patient-specific left atrial anatomical models and fibrotic maps are publicly available at Dryad (https://doi.org/10.5061/dryad.d7wm37q9h). The simulation data requires over 1 TB of storage per subject, making it unsuitable for repository sharing. Data will be shared upon reasonable request for non-commercial use. Any further inquiries can be directed to the corresponding author.
The authors declare that they have no competing interests.
All authors approved the final version of the manuscript submitted for publication and agree to be accountable for all aspects of the work. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.
This work was supported by the National Institutes of Health under grants 1R01HL160024 and 1R01HL158667, the Spanish Research Agency and the European Regional Development Fund under grant PID2019-107279RB-I00, the Comunidad de Madrid and the European Regional Development Fund under grant Y2018/BIO-4858 PREFI-CM, the Instituto de Salud Carlos III and the European Regional Development Fund under the grant PI21/00274-PACER1, and by the Austrian Science Fund (FWF) under grants 10.55776/P37063 and 10.55776/I4652. Funding from the University of Washington Bioengineering Cardiovascular Training Program (T32-EB032787) and the Catherine Holmes Wilkins Charitable Foundation is also gratefully acknowledged.
Supporting Information
Filename | Description |
---|---|
tjp16399-sup-0001-PeerReview.pdf210.6 KB | Peer Review History |
tjp16399-sup-0002-figuresS1-S2.docx2.4 MB | Supplementary information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Akoum, N., Fernandez, G., Wilson, B., Mcgann, C., Kholmovski, E., & Marrouche, N. (2013). Association of atrial fibrosis quantified using LGE-MRI with atrial appendage thrombus and spontaneous contrast on transesophageal echocardiography in patients with atrial fibrillation. Journal of Cardiovascular Electrophysiology, 24(10), 1104–1109.
- Akoum, N., Mahnkopf, C., Kholmovski, E. G., Brachmann, J., & Marrouche, N. F. (2018). Age and sex differences in atrial fibrosis among patients with atrial fibrillation. European Europace, 20(7), 1086–1092.
- Antonielli, E., Pizzuti, A., Pálinkás, A., Tanga, M., Gruber, N., Michelassi, C., Varga, A., Bonzano, A., Gandolfo, N., Halmai, L., Bassignana, A., Imran, M. B., Delnevo, F., Csanády, M., & Picano, E. (2002). Clinical value of left atrial appendage flow for prediction of long-term sinus rhythm maintenance in patients with nonvalvular atrial fibrillation. Journal of the American College of Cardiology, 39(9), 1443–1449.
- Arvidsson, P. M., Töger, J., Heiberg, E., Carlsson, M., & Arheden, H. (2013). Quantification of left and right atrial kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Journal of Applied Physiology, 114(10), 1472–1481.
- Augustin, C. M., Fastl, T. E., Neic, A., Bellini, C., Whitaker, J., Rajani, R., O'Neill, M. D., Bishop, M. J., Plank, G., & Niederer, S. A. (2020). The impact of wall thickness and curvature on wall stress in patient-specific electromechanical models of the left atrium. Biomechanics and Modeling in Mechanobiology, 19(3), 1015–1034.
- Augustin, C. M., Neic, A., Liebmann, M., Prassl, A. J., Niederer, S. A., Haase, G., & Plank, G. (2016). Anatomically accurate high resolution modelling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation. Journal of Computational Physics, 305, 622–646.
- Avazmohammadi, R., Soares, J. S., Li, D. S., Raut, S. S., & Gorman, R. C., (2019). Sacks MS. A contemporary look at biomechanical models of myocardium. Annual Review of Biomedical Engineering, 21, 417–442.
- Bifulco, S. F., Macheret, F., Scott, G. D., Akoum, N., & Boyle, P. M. (2023). Explainable machine learning to predict anchored reentry substrate created by persistent atrial fibrillation ablation in computational models. Journal of the American Heart Association, 12(16), e030500.
- Bifulco, S. F., Scott, G. D., Sarairah, S., Birjandian, Z., Roney, C. H., Niederer, S. A., Mahnkopf, C., Kuhnlein, P., Mitlacher, M., Tirschwell, D., Longstreth, W. T., Akoum, N., & Boyle, P. M. (2021). Computational modelling identifies embolic stroke of undetermined source patients with potential arrhythmic substrate. eLife, 10, e64213.
- Blume, G. G., Mcleod, C. J., Barnes, M. E., Seward, J. B., Pellikka, P. A., Bastiansen, P. M., & Tsang, T. S. (2011). Left atrial function: physiology, assessment, and clinical implications. European Journal of Echocardiography, 12(6), 421–430.
- Boyle, P. M., Del Álamo, J. C., & Akoum, N. (2021). Fibrosis, atrial fibrillation and stroke: Clinical updates and emerging mechanistic models. Heart, 107(2), 99–105.
- Boyle, P. M., Sarairah, S., Kwan, K. T., Scott, G. D., Mohamedali, F., Anderson, C. A., Bifulco, S. F., Ordovas, K. G., Prutkin, J., Robinson, M., Sridhar, A. R., & Akoum, N. (2023). Elevated fibrosis burden as assessed by MRI predicts cryoballoon ablation failure. Journal of Cardiovascular Electrophysiology, 34(2), 302–312.
- Boyle, P. M., Zahid, S., & Trayanova, N. A. (2016). Towards personalized computational modelling of the fibrotic substrate for atrial arrhythmia. EP Europace, 18(suppl_4), iv136–iv145.
- Boyle, P. M., Zghaib, T., Zahid, S., Ali, R. L., Deng, D., Franceschi, W. H., Hakim, J. B., Murphy, M. J., Prakosa, A., Zimmerman, S. L., Ashikaga, H., Marine, J. E., Kolandaivelu, A., Nazarian, S., Spragg, D. D., Calkins, H., & Trayanova, N. A. (2019). Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nature Biomedical Engineering, 3(11), 870–879.
- Bucelli, M., Zingaro, A., Africa, P. C., Fumagalli, I., Dede', L., & Quarteroni, A. (2023). A mathematical model that integrates cardiac electrophysiology, mechanics, and fluid dynamics: Application to the human left heart. International Journal for Numerical Methods in Biomedical Engineering, 39(3), e3678.
- Chaturvedi, R. R., Herron, T., Simmons, R., Shore, D., Kumar, P., Sethia, B., Chua, F., Vassiliadis, E., & Kentish, J. C. (2010). Passive stiffness of myocardium from congenital heart disease and implications for diastole. Circulation, 121(8), 979–988.
- Choi, Y. J., Constantino, J., Vedula, V., Trayanova, N., & Mittal, R. (2015). A new MRI-based model of heart function with coupled hemodynamics and application to normal and diseased canine left ventricles. Frontiers in Bioengineering and Biotechnology, 3, 140.
- Conte, M., Petraglia, L., Cabaro, S., Valerio, V., Poggio, P., Pilato, E., Attena, E., Russo, V., Ferro, A., Formisano, P., Leosco, D., & Parisi, V. (2022). Epicardial adipose tissue and cardiac arrhythmias: Focus on atrial fibrillation. Frontiers in Cardiovascular Medicine, 9, 932262.
- Courtemanche, M., Ramirez, R. J., & Nattel, S. (1998). Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 275(1), H301–H321.
- Crowther, M. A., & Warkentin, T. E. (2008). Bleeding risk and the management of bleeding complications in patients undergoing anticoagulant therapy: Focus on new anticoagulant agents. Blood, The Journal of the American Society of Hematology, 111(10), 4871–4879.
- Cunha, P. S., Laranjo, S., Heijman, J., & Oliveira, M. M. (2022). The atrium in atrial fibrillation–a clinical review on how to manage atrial fibrotic substrates. Frontiers in Cardiovascular Medicine, 9, 879984.
- Daccarett, M., Badger, T. J., Akoum, N., Burgon, N. S., Mahnkopf, C., Vergara, G., Kholmovski, E., McGann, C. J., Parker, D., Brachmann, J., Macleod, R. S., & Marrouche, N. F. (2011). Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. Journal of the American College of Cardiology, 57(7), 831–838.
- Di Biase, L., Natale, A., & Romero, J. (2018). Thrombogenic and arrhythmogenic roles of the left atrial appendage in atrial fibrillation: clinical implications. Circulation, 138(18), 2036–2050.
- Doltra, A., Stawowy, P., Dietrich, T., Schneeweis, C., Fleck, E., & Kelle, S. (2013). Magnetic resonance imaging of cardiovascular fibrosis and inflammation: From clinical practice to animal studies and back. BioMed Research International, 2013, 676489.
- Durán, E., García-Villalba, M., Martínez-Legazpi, P., Gonzalo, A., McVeigh, E., Kahn, A. M., Bermejo, J., Flores, O., & Del Álamo, J. C. (2023). Pulmonary vein flow split effects in patient-specific simulations of left atrial flow. Computers in Biology and Medicine. 163, 107128.
- Eriksson, T. S., Prassl, A. J., Plank, G., & Holzapfel, G. A. (2013). Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction. Mathematics and Mechanics of Solids, 18(6), 592–606.
- Fatkin, D., Kelly, R. P., & Feneley, M. P. (1994). Relations between left atrial appendage blood flow velocity, spontaneous echocardiographic contrast and thromboembolic risk in vivo. Journal of the American College of Cardiology, 23(4), 961–969.
- Feigin, V. L., Brainin, M., Norrving, B., Martins, S., Sacco, R. L., Hacke, W., Fisher, M., Pandian, J., & Lindsay, P. (2022). World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. International Journal of Stroke, 17(1), 18–29.
- Feng, L., Gao, H., Griffith, B., Niederer, S., & Luo, X. (2019). Analysis of a coupled fluid-structure interaction model of the left atrium and mitral valve. International Journal for Numerical Methods in Biomedical Engineering, 35(11), e3254.
- Frangogiannis, N. G. (2021). Cardiac fibrosis. Cardiovascular Research, 117(6), 1450–1488.
- García-Villalba, M., Rossini, L., Gonzalo, A., Vigneault, D., Martinez-Legazpi, P., Durán, E., Flores, O., Bermejo, J., McVeigh, E., Kahn, A. M., & Del Álamo, J. C. (2021). Demonstration of patient-specific simulations to assess left atrial appendage thrombogenesis risk. Frontiers in Physiology, 12, 596596.
- Gonzalo, A., García-Villalba, M., Rossini, L., Durán, E., Vigneault, D., Martínez-Legazpi, P., Flores, O., Bermejo, J., McVeigh, E., Kahn, A. M., & Del Alamo, J. C. (2022). Non-Newtonian blood rheology impacts left atrial stasis in patient-specific simulations. International Journal for Numerical Methods in Biomedical Engineering, 38(6), e3597.
- Gramley, F., Lorenzen, J., Knackstedt, C., Rana, O. R., Saygili, E., Frechen, D., Stanzel, S., Pezzella, F., Koellensperger, E., Weiss, C., Münzel, T., & Schauerte, P. (2009). Age-related atrial fibrosis. Age, 31(1), 27–38.
- Hopman, L. H., Mulder, M. J., van der Laan, A. M., Demirkiran, A., Bhagirath, P., van Rossum, A. C., Allaart, C. P., & Götte, M. J. W. (2021). Impaired left atrial reservoir and conduit strain in patients with atrial fibrillation and extensive left atrial fibrosis. Journal of Cardiovascular Magnetic Resonance, 23(1), 131.
- Hwang, S. H., Oh, Y.-W., Kim, M.-N., Park, S.-M., Shim, W. J., Shim, J., Choi, J. I., & Kim, Y. H. (2016). Relationship between left atrial appendage emptying and left atrial function using cardiac magnetic resonance in patients with atrial fibrillation: Comparison with transesophageal echocardiography. The International Journal of Cardiovascular Imaging, 32(Suppl 1), 163–171.
- Khurram, I. M., Dewire, J., Mager, M., Maqbool, F., Zimmerman, S. L., Zipunnikov, V., Beinart, R., Marine, J. E., Spragg, D. D., Berger, R. D., Ashikaga, H., Nazarian, S., & Calkins, H. (2013). Relationship between left atrial appendage morphology and stroke in patients with atrial fibrillation. Heart Rhythm, 10(12), 1843–1849.
- King, J. B., Azadani, P. N., Suksaranjit, P., Bress, A. P., Witt, D. M., Han, F. T., Chelu, M. G., Silver, M. A., Biskupiak, J., Wilson, B. D., Morris, A. K., Kholmovski, E. G., & Marrouche, N. (2017). Left atrial fibrosis and risk of cerebrovascular and cardiovascular events in patients with atrial fibrillation. Journal of the American College of Cardiology, 70(11), 1311–1321.
- King, J. H., Huang, C. L.-H., & Fraser, J. A. (2013). Determinants of myocardial conduction velocity: Implications for arrhythmogenesis. Frontiers in Physiology, 4, 154.
- Kirchhof, P., Breithardt, G., Aliot, E., Al Khatib, S., Apostolakis, S., Auricchio, A., Bailleul, C., Bax, J., Benninger, G., Blomstrom-Lundqvist, C., Boersma, L., Boriani, G., Brandes, A., Brown, H., Brueckmann, M., Calkins, H., Casadei, B., Clemens, A., Crijns, H., … Camm, A. J. (2013). Personalized management of atrial fibrillation: Proceedings from the fourth Atrial Fibrillation competence NETwork/European Heart Rhythm Association consensus conference. Europace, 15(11), 1540–1556.
- Kong, P., Christia, P., & Frangogiannis, N. G. (2014). The pathogenesis of cardiac fibrosis. Cellular and molecular life sciences, 71(4), 549–574.
- Krummen, D. E., Bayer, J. D., Ho, J., Ho, G., Smetak, M. R., Clopton, P., Trayanova, N. A., & Narayan, S. M. (2012). Mechanisms of human atrial fibrillation initiation: Clinical and computational studies of repolarization restitution and activation latency. Circulation: Arrhythmia and Electrophysiology, 5(6), 1149–1159.
- Kühnlein, P., Mahnkopf, C., Majersik, J. J., Wilson, B. D., Mitlacher, M., Tirschwell, D., Longstreth, W. T., Jr., & Akoum, N. (2021). Atrial fibrosis in embolic stroke of undetermined source: A multicenter study. European Journal of Neurology, 28(11), 3634–3639.
- Kuppahally, S. S., Akoum, N., Burgon, N. S., Badger, T. J., Kholmovski, E. G., Vijayakumar, S., Rao, S. N., Blauer, J., Fish, E. N., Dibella, E. V., Macleod, R. S., McGann, C., Litwin, S. E., & Marrouche, N. F. (2010). Left atrial strain and strain rate in patients with paroxysmal and persistent atrial fibrillation: Relationship to left atrial structural remodelling detected by delayed-enhancement MRI. Circulation: Cardiovascular Imaging, 3(3), 231–239.
- Lamassa, M., Di Carlo, A., Pracucci, G., Basile, A. M., Trefoloni, G., Vanni, P., Spolveri, S., Baruffi, M. C., Landini, G., Ghetti, A., Wolfe, C. D. A., & Inzitari, D. (2001). Characteristics, outcome, and care of stroke associated with atrial fibrillation in Europe: Data from a multicenter multinational hospital–based registry (The European Community Stroke Project). Stroke; A Journal of Cerebral Circulation, 32(2), 392–398.
- Land, S., & Niederer, S. A. (2018). Influence of atrial contraction dynamics on cardiac function. International Journal for Numerical Methods in Biomedical Engineering, 34(3), e2931.
- Land, S., Park-Holohan, S.-J., Smith, N. P., Dos Remedios, C. G., Kentish, J. C., & Niederer, S. A. (2017). A model of cardiac contraction based on novel measurements of tension development in human cardiomyocytes. Journal of Molecular and Cellular Cardiology, 106, 68–83.
- Lantz, J., Henriksson, L., Persson, A., Karlsson, M., & Ebbers, T. (2016). Patient-specific simulation of cardiac blood flow from high-resolution computed tomography. Journal of Biomechanical Engineering, 138(12), 121004.
- Li, Y., Li, W., Yang, B., Han, W., Dong, D., Xue, J., Li, B., Yang, S., & Sheng, L. (2007). Effects of Cilazapril on atrial electrical, structural and functional remodelling in atrial fibrillation dogs. Journal of Electrocardiology, 40(1), 100.e1–100.e1006.
- Lin, H.-J., Wolf, P. A., Kelly-Hayes, M., Beiser, A. S., Kase, C. S., Benjamin, E. J., & D'Agostino, R. B. (1996). Stroke severity in atrial fibrillation: The Framingham Study. Stroke; A Journal of Cerebral Circulation, 27(10), 1760–1764.
- Lippi, G., Sanchis-Gomar, F., & Cervellin, G. (2021). Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. International Journal of Stroke, 16(2), 217–221.
- Lisi, M., Mandoli, G. E., Cameli, M., Pastore, M. C., Righini, F. M., Benfari, G., Rubboli, A., D'Ascenzi, F., Focardi, M., Tsioulpas, C., Bernazzali, S., Maccherini, M., Lisi, E., Lindqvist, P., Valente, S., Mondillo, S., & Henein, M. Y. (2022). Left atrial strain by speckle tracking predicts atrial fibrosis in patients undergoing heart transplantation. European Heart Journal-Cardiovascular Imaging, 23(6), 829–835.
- Liu, H., Fan, P., Jin, F., Huang, G., Guo, X., & Xu, F. (2022). Dynamic and static biomechanical traits of cardiac fibrosis. Frontiers in Bioengineering and Biotechnology, 10, 1042030.
- Macheret, F., Bifulco, S. F., Scott, G. D., Kwan, K. T., Chahine, Y., Afroze, T., McDonagh, R., Akoum, N., & Boyle, P. M. (2023). Comparing Inducibility of re-entrant arrhythmia in patient-specific computational models to clinical atrial fibrillation phenotypes. Clinical Electrophysiology, 9(10), 2149–2162.
- Mahnkopf, C., Kwon, Y., & Akoum, N. (2021). Atrial fibrosis, ischaemic stroke and atrial fibrillation. Arrhythmia & Electrophysiology Review, 10(4), 225.
- Markl, M., Lee, D. C., Furiasse, N., Carr, M., Foucar, C., Ng, J., Carr, J., & Goldberger, J. J. (2016). Left atrial and left atrial appendage 4D blood flow dynamics in atrial fibrillation. Circulation: Cardiovascular Imaging, 9(9), e004984.
- Marrouche, N. F., Wazni, O., McGann, C., Greene, T., Dean, J. M., Dagher, L., Kholmovski, E., Mansour, M., Marchlinski, F., Wilber, D., Hindricks, G., Mahnkopf, C., Wells, D., Jais, P., Sanders, P., Brachmann, J., Bax, J. J., Morrison-de Boer, L., Deneke, T., … DECAAF II Investigators. (2022). Effect of MRI-guided fibrosis ablation vs conventional catheter ablation on atrial arrhythmia recurrence in patients with persistent atrial fibrillation: The DECAAF II randomized clinical trial. The Journal of the American Medical Association, 327(23), 2296–2305.
- Marrouche, N. F., Wilber, D., Hindricks, G., Jais, P., Akoum, N., Marchlinski, F., Kholmovski, E., Burgon, N., Hu, N., Mont, L., Deneke, T., Duytschaever, M., Neumann, T., Mansour, M., Mahnkopf, C., Herweg, B., Daoud, E., Wissner, E., Bansmann, P., & Brachmann, J. (2014). Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: The DECAAF study. Journal of the American Medical Association, 311(5), 498–506.
- Marx, L., Niestrawska, J. A., Gsell, M. A., Caforio, F., Plank, G., & Augustin, C. M. (2022). Robust and efficient fixed-point algorithm for the inverse elastostatic problem to identify myocardial passive material parameters and the unloaded reference configuration. Journal of Computational Physics, 463, 111266.
- Mastikhina, O., Moon, B.-U., Williams, K., Hatkar, R., Gustafson, D., Mourad, O., Sun, X., Koo, M., Lam, A. Y. L., Sun, Y., Fish, J. E., Young, E. W. K., & Nunes, S. S. (2020). Human cardiac fibrosis-on-a-chip model recapitulates disease hallmarks and can serve as a platform for drug testing. Biomaterials, 233, 119741.
- Moriche, M. (2017). A numerical study on the aerodynamic forces and the wake stability of flapping flight at low Reynolds number [PhD thesis]. Universidad Carlos III de Madrid.
- Münch, J., & Abdelilah-Seyfried, S. (2021). Sensing and responding of cardiomyocytes to changes of tissue stiffness in the diseased heart. Frontiers in Cell and Developmental Biology, 9, 642840.
- Myronenko, A., & Song, X. (2010). Point set registration: Coherent point drift. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(12), 2262–2275.
- Neic, A., Gsell, M. A., Karabelas, E., Prassl, A. J., & Plank, G. (2020). Automating image-based mesh generation and manipulation tasks in cardiac modelling workflows using meshtool. SoftwareX, 11, 100454.
- Ng, A. C., Strudwick, M., van der Geest, R. J., Ng, A. C., Gillinder, L., Goo, S. Y., Cowin, G., Delgado, V., Wang, W. Y. S., & Bax, J. J. (2018). Impact of epicardial adipose tissue, left ventricular myocardial fat content, and interstitial fibrosis on myocardial contractile function. Circulation: Cardiovascular Imaging, 11(8), e007372.
- Nordsletten, D., Niederer, S., Nash, M., Hunter, P., & Smith, N. (2011). Coupling multi-physics models to cardiac mechanics. Progress in Biophysics and Molecular Biology, 104(1–3), 77–88.
- Olsen, F. J., Bertelsen, L., Vejlstrup, N., Diederichsen, S. Z., Bjerregaard, C. L., Graff, C., Brandes, A., Krieger, D., Haugan, K., Køber, L., Højberg, S., Svendsen, J. H., & Biering-Sørensen, T. (2023). Association between four-dimensional echocardiographic left atrial measures and left atrial fibrosis assessed by left atrial late gadolinium enhancement. European Heart Journal-Cardiovascular Imaging, 24(1), 152–161.
10.1093/ehjci/jeab275 Google Scholar
- Paliwal, N., Ali, R. L., Salvador, M., O'Hara, R., Yu, R., Daimee, U. A., Akhtar, T., Pandey, P., Spragg, D. D., Calkins, H., & Trayanova, N. A. (2021). Presence of left atrial fibrosis may contribute to aberrant hemodynamics and increased risk of stroke in atrial fibrillation patients. Frontiers in Physiology, 12, 657452.
- Peskin, C. S. (2002). The immersed boundary method. Acta Numerica, 11, 479–517.
10.1017/S0962492902000077 Google Scholar
- Plank, G., Loewe, A., Neic, A., Augustin, C., Huang, Y.-L., Gsell, M. A., Karabelas, E., Nothstein, M., Prassl, A. J., Sánchez, J., Seemann, G., &Vigmond, E. J. (2021). The openCARP simulation environment for cardiac electrophysiology. Computer Methods and Programs in Biomedicine, 208, 106223.
- Potse, M., Dubé, B., Richer, J., Vinet, A., & Gulrajani, R. M. (2006). A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Transactions on Biomedical Engineering, 53(12), 2425–2435.
- Quarteroni, A., Lassila, T., Rossi, S., & Ruiz-Baier, R. (2017). Integrated heart—coupling multiscale and multiphysics models for the simulation of the cardiac function. Computer Methods in Applied Mechanics and Engineering, 314, 345–407.
- Romero, J., Cao, J. J., & Garcia, M. J., (2014). Taub CC. Cardiac imaging for assessment of left atrial appendage stasis and thrombosis. Nature Reviews Cardiology, 11(8), 470–480.
- Roney, C. H., Bayer, J. D., Zahid, S., Meo, M., Boyle, P. M., Trayanova, N. A., Haïssaguerre, M., Dubois, R., Cochet, H., & Vigmond, E. J. (2016). Modelling methodology of atrial fibrosis affects rotor dynamics and electrograms. EP Europace, 18(suppl_4), iv146–iv155.
- Roney, C. H., Bendikas, R., Pashakhanloo, F., Corrado, C., Vigmond, E. J., McVeigh, E. R., Trayanova, N. A., & Niederer, S. A. (2021). Constructing a human atrial fibre atlas. Annals of Biomedical Engineering, 49, 233–250.
- Sanatkhani, S., Nedios, S., Menon, P. G., Saba, S. F., Jain, S. K., Federspiel, W. J., & Shroff, S. G. (2023). Subject-specific factors affecting particle residence time distribution of left atrial appendage in atrial fibrillation: A computational model-based study. Frontiers in Cardiovascular Medicine, 10, 1070498.
- Sugiura, S., Okada, J.-I., Washio, T., & Hisada, T. (2022). UT-heart: A finite element model designed for the multiscale and multiphysics integration of our knowledge on the human heart. Computational Systems Biology in Medicine and Biotechnology: Methods and Protocols (pp. 221–245). Springer.
10.1007/978-1-0716-1831-8_10 Google Scholar
- Sun, Y., Ling, Y., Chen, Z., Wang, Z., Li, T., Tong, Q., & Qian, Y. (2023). Finding low CHA2DS2-VASc scores unreliable? Why not give morphological and hemodynamic methods a try? Frontiers in Cardiovascular Medicine, 9, 1032736.
- Tandon, K., Tirschwell, D., Longstreth, W., Smith, B., & Akoum, N. (2019). Embolic stroke of undetermined source correlates to atrial fibrosis without atrial fibrillation. Neurology, 93(4), e381–e387.
- Telle, Å., Bargellini, C., Chahine, Y., Del Álamo, J. C., Akoum, N., & Boyle, P. M. (2023). Personalized biomechanical insights in atrial fibrillation: Opportunities & challenges. Expert Review of Cardiovascular Therapy, 21(11), 817–837.
- Thomas, T. P., & Grisanti, L. A. (2020). The dynamic interplay between cardiac inflammation and fibrosis. Frontiers in Physiology, 11, 529075.
- Travers, J. G., Kamal, F. A., Robbins, J., Yutzey, K. E., & Blaxall, B. C. (2016). Cardiac fibrosis: The fibroblast awakens. Circulation Research, 118(6), 1021–1040.
- Triposkiadis, F., Harbas, C., Sitafidis, G., Skoularigis, J., Demopoulos, V., & Kelepeshis, G. (2008). Echocardiographic assessment of left atrial ejection force and kinetic energy in chronic heart failure. The international Journal of Cardiovascular Imaging, 24(1), 15–22.
- Uhlmann, M. (2005). An immersed boundary method with direct forcing for the simulation of particulate flows. Journal of Computational Physics, 209(2), 448–476.
- Vedula, V., George, R., Younes, L., & Mittal, R. (2015). Hemodynamics in the left atrium and its effect on ventricular flow patterns. Journal of Biomechanical Engineering, 137(11), 111003.
- Verzicco, R. (2022). Electro-fluid-mechanics of the heart. Journal of Fluid Mechanics, 941, P1.
- Vigmond, E. J., Clements, C., McQueen, D. M., & Peskin, C. S. (2008). Effect of bundle branch block on cardiac output: A whole heart simulation study. Progress in Biophysics and Molecular Biology, 97(2–3), 520–542.
- Viola, F., Del Corso, G., De Paulis, R., & Verzicco, R. (2023). GPU accelerated digital twins of the human heart open new routes for cardiovascular research. Scientific Reports, 13(1), 8230.
- Viola, F., Meschini, V., & Verzicco, R. (2020). Fluid–structure-electrophysiology interaction (FSEI) in the left-heart: A multi-way coupled computational model. European Journal of Mechanics-B/Fluids, 79, 212–232.
- Viola, F., Spandan, V., Meschini, V., Romero, J., Fatica, M., de Tullio, M. D., & Verzicco, R. (2022). FSEI-GPU: GPU accelerated simulations of the fluid–structure–electrophysiology interaction in the left heart. Computer Physics Communications, 273, 108248.
- Wang, E. Y., Rafatian, N., Zhao, Y., Lee, A., Lai, B. F. L., Lu, R. X., Jekic, D., Davenport Huyer, L., Knee-Walden, E. J., Bhattacharya, S., Backx, P. H., & Radisic, M. (2019). Biowire model of interstitial and focal cardiac fibrosis. American Chemical Society Central Science, 5(7), 1146–1158.
- Waolff, P. (1991). Atrial fibrillation as an independent risk factor for stroke. Stroke; A Journal of Cerebral Circulation, 22(8), 983–988.
- Watanabe, H., Sugiura, S., Kafuku, H., & Hisada, T. (2004). Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. Biophysical Journal, 87(3), 2074–2085.
- Wynn, T. (2008). Cellular and molecular mechanisms of fibrosis. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 214(2), 199–210.
- Yaghi, S., Chang, A., Ignacio, G., Scher, E., Panda, N., Chu, A., Wu, M., Lord, A., Mac Grory, B., Furie, K., Elkind, M. S. V., Atalay, M., & Song, C. (2020). Left atrial appendage morphology improves prediction of stagnant flow and stroke risk in atrial fibrillation. Circulation: Arrhythmia and Electrophysiology, 13(2), e008074.
- Yamamoto, M., Seo, Y., Kawamatsu, N., Sato, K., Sugano, A., Machino-Ohtsuka, T., Kawamura, R., Nakajima, H., Igarashi, M., Sekiguchi, Y., Ishizu, T., & Aonuma, K. (2014). Complex left atrial appendage morphology and left atrial appendage thrombus formation in patients with atrial fibrillation. Circulation: Cardiovascular Imaging, 7(2), 337–343.
- Zahid, S., Cochet, H., Boyle, P. M., Schwarz, E. L., Whyte, K. N., Vigmond, E. J., Dubois, R., Hocini, M., Haïssaguerre, M., Jaïs, P., & Trayanova, N. A. (2016). Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovascular Research, 110(3), 443–454.
- Zingaro, A., Ahmad, Z., Kholmovski, E., Sakata, K., Dede', L., Morris, A. K., Quarteroni, A., & Trayanova, N. A. (2024). A comprehensive stroke risk assessment by combining atrial computational fluid dynamics simulations and functional patient data. bioRxiv. https://doi.org/10.1101/2024.01.11.575156.
10.1101/2024.01.11.575156 Google Scholar
- Zingaro, A., Vergara, C., Dede’, L., Regazzoni, F., & Quarteroni, A. (2023). A comprehensive mathematical model for cardiac perfusion. Scientific Reports, 13(1), 14220.