Mechanisms underlying divergent relationships between Ca2+ and YAP/TAZ signalling
A. Khalilimeybodi
Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
Search for more papers by this authorCorresponding Author
S.I. Fraley
Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
Corresponding authors S. I. Fraley and P. Rangamani, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA. Emails: [email protected] and [email protected]
Search for more papers by this authorP. Rangamani
Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
Search for more papers by this authorA. Khalilimeybodi
Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
Search for more papers by this authorCorresponding Author
S.I. Fraley
Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
Corresponding authors S. I. Fraley and P. Rangamani, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA. Emails: [email protected] and [email protected]
Search for more papers by this authorP. Rangamani
Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
Search for more papers by this authorHandling Editors: Natalia Trayanova & Eleonora Grandi
The peer review history is available in the Supporting information section of this article (https://doi.org/10.1113/JP283966#support-information-section).
This article was first published as a preprint. Khalilimeybodi A, Fraley SI, Rangamani P. 2022. Mechanisms underlying divergent relationships between Ca2+ and YAP/TAZ signaling. bioRxiv. https://doi.org/10.1101/2022.10.06.511161
Abstract
Key points
- YAP/TAZ integrates biochemical and biomechanical inputs to regulate cellular functions, and Ca2+ acts as a key second messenger linking cellular inputs to YAP/TAZ.
- Studies have reported contradictory Ca2+–YAP/TAZ relationships for different cell types and stimuli.
- A network model of Ca2+-mediated YAP/TAZ signalling was developed to investigate the underlying mechanisms of divergent Ca2+–YAP/TAZ relationships.
- The model predicts context-dependent Ca2+ transient, CaMKII bistable response and frequency-dependent activation of LATS1/2 upstream regulators as mechanisms governing the Ca2+–YAP/TAZ relationship.
- This study provides new insights into the underlying mechanisms of the controversial Ca2+–YAP/TAZ relationship to better understand the dynamics of cellular functions controlled by YAP/TAZ activity.
Open Research
Open research badges
This article has earned an Open Data badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://github.com/mkm1712/Calcium_YAP-TAZ.
Data availability statement
All data generated or analysed during this study are included in this published article (and its supplementary information files). The model's MATLAB code, including model species, parameters, reaction rates and systems of ODEs, is available at https://github.com/mkm1712/Calcium_YAP-TAZ.
Supporting Information
Filename | Description |
---|---|
tjp15381-sup-0001-StatisticalSummary.xlsx48.9 KB | Statistical Summary Document |
tjp15381-sup-0002-PeerReview.pdf328.1 KB | Peer Review History |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Abdellatif, M. M., Neubauer, C. F., Lederer, W. J., & Rogers, T. B. (1991). Angiotensin-induced desensitization of the phosphoinositide pathway in cardiac cells occurs at the level of the receptor. Circulation Research, 69(3), 800–809.
- Archibald, A., Al-Masri, M., Liew-Spilger, A., & McCaffrey, L. (2015). Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Molecular Biology of the Cell, 26(20), 3578–3595.
- Artemenko, Y., Axiotakis, L. Jr, Borleis, J., Iglesias, P. A., & Devreotes, P. N. (2016). Chemical and mechanical stimuli act on common signal transduction and cytoskeletal networks. PNAS, 113(47), E7500–E7509.
- Azeloglu, E. U., & Iyengar, R. (2015). Signaling networks: Information flow, computation, and decision making. Cold Spring Harbor Perspectives in Biology, 7(4), a005934.
- Bae, S. J., & Luo, X. (2018). Activation mechanisms of the Hippo kinase signaling cascade. Bioscience Reports, 38(4), BSR20171469.
- Baker, H. L., Errington, R. J., Davies, S. C., & Campbell, A. K. (2002). A mathematical model predicts that calreticulin interacts with the endoplasmic reticulum Ca2+-ATPase. Biophysical Journal, 82(2), 582–590.
- Balesdent, M., Brevaul, L., Lacaze, S., Missoum, S., & Morio, J. (2016). 8 - Methods for high-dimensional and computationally intensive models. In J. Morio & M. Balesdent (Eds.), Estimation of rare event probabilities in complex aerospace and other systems (pp. 109–136). Woodhead Publishing.
10.1016/B978-0-08-100091-5.00008-3 Google Scholar
- Barra Avila, D., Melendez-Alvarez, J. R., & Tian, X.-J. (2021). Control of tissue homeostasis, tumourigenesis, and degeneration by coupled bidirectional bistable switches. Plos Computational Biology, 17(11), e1009606.
- Barreto, S., Gonzalez-Vazquez, A., Cameron, A. R., Cavanagh, B., Murray, D. J., & O'Brien, F. J. (2017). Identification of the mechanisms by which age alters the mechanosensitivity of mesenchymal stromal cells on substrates of differing stiffness: Implications for osteogenesis and angiogenesis. Acta Biomaterialia, 53, 59–69.
- Beamish, J. A., Chen, E., & Putnam, A. J. (2017). Engineered extracellular matrices with controlled mechanics modulate renal proximal tubular cell epithelialization. PLoS One, 12(7), e0181085.
- Bhalla, U. S., & Iyengar, R. (1999). Emergent properties of networks of biological signaling pathways. Science, 283(5400), 381–387.
- Bollag, W. B., Barrett, P. Q., Isales, C. M., & Rasmussen, H. (1991). Angiotensin-II-induced changes in diacylglycerol levels and their potential role in modulating the steroidogenic response. Endocrinology, 128(1), 231–241.
- Bouallegue, A., Simo Cheyou, E. R., Anand-Srivastava, M. B., & Srivastava, A. K. (2013). ET-1-induced growth promoting responses involving ERK1/2 and PKB signaling and Egr-1 expression are mediated by Ca2+/CaM-dependent protein kinase-II in vascular smooth muscle cells. Cell Calcium, 54(6), 428–435.
- Buxboim, A., Swift, J., Irianto, J., Spinler, K. R., Dingal, P., Athirasala, A., Kao, Y.-R. C., Cho, S., Harada, T., Shin, J.-W., & Discher, D. E. (2014). Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin. Current Biology, 24(16), 1909–1917.
- Byrd, R. H., Gilbert, J. C., & Nocedal, J. (2000). A trust region method based on interior point techniques for nonlinear programming. Mathematical Programming, 89(1), 149–185.
- Cai, X., Wang, K.-C., & Meng, Z. (2021). Mechanoregulation of YAP and TAZ in cellular homeostasis and disease progression. Frontiers in Cell and Developmental Biology, 9, 673599.
- Caliari, S. R., Vega, S. L., Kwon, M., Soulas, E. M., & Burdick, J. A. (2016). Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. Biomaterials, 103, 314–323.
- Cao, L., Kerleau, M., Suzuki, E. L., Wioland, H., Jouet, S., Guichard, B., Lenz, M., Romet-Lemonne, G., & Jegou, A. (2018). Modulation of formin processivity by profilin and mechanical tension. Elife, 7, e34176.
- Codelia, V. A., Sun, G., & Irvine, K. D. (2014). Regulation of YAP by mechanical strain through Jnk and Hippo signaling. Current Biology, 24(17), 2012–2017.
- Cooling, M., Hunter, P., & Crampin, E. J. (2007). Modeling hypertrophic IP3 transients in the cardiac myocyte. Biophysical Journal, 93(10), 3421–3433.
- D'Amore, A., Hanbashi, A. A., Di Agostino, S., Palombi, F., Sacconi, A., Voruganti, A., Taggi, M., Canipari, R., Blandino, G., Parrington, J., & Filippini, A. (2020). Loss of two-pore channel 2 (TPC2) expression increases the metastatic traits of melanoma cells by a mechanism involving the hippo signalling pathway and store-operated calcium entry. Cancers, 12(9), 2391.
- Dang, D. K., Makena, M. R., Llongueras, J. P., Prasad, H., Ko, M., Bandral, M., & Rao, R. (2019). A Ca2+-ATPase regulates e-cadherin biogenesis and epithelial-mesenchymal transition in breast cancer cells. Molecular Cancer Research, 17(8), 1735–1747.
- Das, A., Fischer, R. S., Pan, D., & Waterman, C. M. (2016). YAP nuclear localization in the absence of cell-cell contact is mediated by a filamentous actin-dependent, myosin II- and phospho-YAP-independent pathway during extracellular matrix mechanosensing. Journal of Biological Chemistry, 291(12), 6096–6110.
- Dasgupta, I., & McCollum, D. (2019). Control of cellular responses to mechanical cues through YAP/TAZ regulation. Journal of Biological Chemistry, 294(46), 17693–17706.
- De Young, G. W., & Keizer, J. (1992). A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. PNAS, 89(20), 9895–9899.
- Deng, Z., Wang, W., Xu, X., Gould, O. E. C., Kratz, K., Ma, N., & Lendlein, A. (2020). Polymeric sheet actuators with programmable bioinstructivity. PNAS, 117(4), 1895–1901.
- Dolan, A. T., & Diamond, S. L. (2014). Systems modeling of Ca2+ homeostasis and mobilization in platelets mediated by IP3 and store-operated Ca2+ entry. Biophysical Journal, 106(9), 2049–2060.
- Dolgacheva, L. P., Turovskaya, M. V., Dynnik, V. V., Zinchenko, V. P., Goncharov, N. V., Davletov, B., & Turovsky, E. A. (2016). Angiotensin II activates different calcium signaling pathways in adipocytes. Archives of Biochemistry and Biophysics, 593, 38–49.
- Dupont, G., Falcke, M., Kirk, V., & Sneyd, J. (2016). Models of calcium signalling. Springer International Publishing.
10.1007/978-3-319-29647-0 Google Scholar
- Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le Digabel, J., Forcato, M., Bicciato, S., Elvassore, N., & Piccolo, S. (2011). Role of YAP/TAZ in mechanotransduction. Nature, 474(7350), 179–183.
- Elosegui-Artola, A., Andreu, I., Beedle, A. E. M., Lezamiz, A., Uroz, M., Kosmalska, A. J., Oria, R., Kechagia, J. Z., Rico-Lastres, P., Le Roux, A.-L., Shanahan, C. M., Trepat, X., Navajas, D., Garcia-Manyes, S., & Roca-Cusachs, P. (2017). Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell, 171(6), 1397–1410.e14.
- Franklin, J. M., Ghosh, R. P., Shi, Q., Reddick, M. P., & Liphardt, J. T. (2020). Concerted localization-resets precede YAP-dependent transcription. Nature Communications, 11(1), 4581.
- Furth, N., Pateras, I. S., Rotkopf, R., Vlachou, V., Rivkin, I., Schmitt, I., Bakaev, D., Gershoni, A., Ainbinder, E., Leshkowitz, D., Johnson, R. L., Gorgoulis, V. G., Oren, M., & Aylon, Y. (2018). LATS1 and LATS2 suppress breast cancer progression by maintaining cell identity and metabolic state. Life Science Alliance, 1(5), e201800171.
- Galan, J. A., & Avruch, J. (2016). MST1/MST2 protein kinases: Regulation and physiologic roles. Biochemistry, 55(39), 5507–5519.
- Gil-Parrado, S., Fernández-Montalván, A., Assfalg-Machleidt, I., Popp, O., Bestvater, F., Holloschi, A., Knoch, T. A., Auerswald, E. A., Welsh, K., Reed, J. C., Fritz, H., Fuentes-Prior, P., Spiess, E., Salvesen, G. S., & Machleidt, W. (2002). Ionomycin-activated calpain triggers apoptosis. A probable role for Bcl-2 family members. Journal of Biological Chemistry, 277(30), 27217–27226.
- Gong, R., Hong, A. W., Plouffe, S. W., Zhao, B., Liu, G., Yu, F.-X., Xu, Y., & Guan, K.-L. (2015). Opposing roles of conventional and novel PKC isoforms in Hippo-YAP pathway regulation. Cell Research, 25(8), 985–988.
- Gordge, P. C., Hulme, M. J., Clegg, R. A., & Miller, W. R. (1996). Elevation of protein kinase A and protein kinase C activities in malignant as compared with normal human breast tissue. European Journal of Cancer, 32(12), 2120–2126.
- Gudlur, A., Zeraik, A. E., Hirve, N., Rajanikanth, V., Bobkov, A. A., Ma, G., Zheng, S., Wang, Y., Zhou, Y., Komives, E. A., & Hogan, P. G. (2018). Calcium sensing by the STIM1 ER-luminal domain. Nature Communications, 9(1), 4536.
- Guo, X., & Zhao, B. (2013). Integration of mechanical and chemical signals by YAP and TAZ transcription coactivators. Cell & Bioscience, 3(1), 33.
- Han, S., Pang, M.-F., & Nelson, C. M. (2018). Substratum stiffness tunes proliferation downstream of Wnt3a in part by regulating integrin-linked kinase and frizzled-1. Journal of Cell Science, 131(8), jcs210476.
- Hao, Y., Chun, A., Cheung, K., Rashidi, B., & Yang, X. (2008). Tumor suppressor LATS1 is a negative regulator of oncogene YAP. Journal of Biological Chemistry, 283(9), 5496–5509.
- Harootunian, A. T., Kao, J. P., Paranjape, S., & Tsien, R. Y. (1991). Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP3. Science, 251(4989), 75–78.
- Haws, H. J., McNeil, M. A., & Hansen, M. D. H. (2016). Control of cell mechanics by RhoA and calcium fluxes during epithelial scattering. Tissue Barriers, 4(3), e1187326.
- Hein, A. L., Brandquist, N. D., Ouellette, C. Y., Seshacharyulu, P., Enke, C. A., Ouellette, M. M., Batra, S. K., & Yan, Y. (2019). PR55α regulatory subunit of PP2A inhibits the MOB1/LATS cascade and activates YAP in pancreatic cancer cells. Oncogenesis, 8(11), 63.
- Hom, J. R., Gewandter, J. S., Michael, L., Sheu, S.-S., & Yoon, Y. (2007). Thapsigargin induces biphasic fragmentation of mitochondria through calcium-mediated mitochondrial fission and apoptosis. Journal of Cellular Physiology, 212(2), 498–508.
- Hong, W., & Guan, K.-L. (2012). The YAP and TAZ transcription co-activators: Key downstream effectors of the mammalian Hippo pathway. Seminars in Cell & Developmental Biology, 23(7), 785–793.
- Huang, X. C., Richards, E. M., & Sumners, C. (1995). Angiotensin II type 2 receptor-mediated stimulation of protein phosphatase 2A in rat hypothalamic/brainstem neuronal cocultures. Journal of Neurochemistry, 65(5), 2131–2137.
- Huang, Y.-W., Chang, S.-J., Harn, H. I.-C., Huang, H.-T., Lin, H.-H., Shen, M.-R., Tang, M.-J., & Chiu, W.-T. (2015). Mechanosensitive store-operated calcium entry regulates the formation of cell polarity. Journal of Cellular Physiology, 230(9), 2086–2097.
- Iribe, G., Kohl, P., & Noble, D. (2006). Modulatory effect of calmodulin-dependent kinase II (CaMKII) on sarcoplasmic reticulum Ca2+ handling and interval-force relations: a modelling study. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 364, 1107–1133.
- Jang, J.-W., Kim, M.-K., & Bae, S.-C. (2020). Reciprocal regulation of YAP/TAZ by the Hippo pathway and the Small GTPase pathway. Small GTPases, 11(4), 280–288.
- Janmey, P. A., Fletcher, D. A., & Reinhart-King, C. A. (2020). Stiffness sensing by cells. Physiological Reviews, 100(2), 695–724.
- Jiang, Y., Zhang, H., Wang, J., Liu, Y., Luo, T., & Hua, H. (2022). Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. Journal of hematology & oncology, 15(1), 34.
- Kang, M., & Othmer, H. G. (2007). The variety of cytosolic calcium responses and possible roles of PLC and PKC. Physical Biology, 4(4), 325–343.
- Khalilimeybodi, A., Daneshmehr, A., & Sharif Kashani, B. (2018). Ca2+-dependent calcineurin/NFAT signaling in β-adrenergic-induced cardiac hypertrophy. General Physiology and Biophysics, 37(01), 41–56.
- Khalilimeybodi, A., Paap, A. M., Christiansen, S. L. M., & Saucerman, J. J. (2020). Context-specific network modeling identifies new crosstalk in β-adrenergic cardiac hypertrophy. Plos Computational Biology, 16(12), e1008490.
- Khalilimeybodi, A., Riaz, M., Campbell, S. G., Omens, J. H., McCulloch, A. D., Qyang, Y., & Saucerman, J. J. (2022). Signaling network model of cardiomyocyte morphological changes in familial cardiomyopathy. Journal of Molecular and Cellular Cardiology, 174, 1–14.
- Khare, Y. P., Muñoz-Carpena, R., Rooney, R. W., & Martinez, C. J. (2015). A multi-criteria trajectory-based parameter sampling strategy for the screening method of elementary effects. Environmental Modelling & Software, 64, 230–239.
- Kholodenko, B. N. (2006). Cell-signalling dynamics in time and space. Nature Reviews Molecular Cell Biology, 7(3), 165–176.
- Kline, D., & Kline, J. T. (1992). Thapsigargin activates a calcium influx pathway in the unfertilized mouse egg and suppresses repetitive calcium transients in the fertilized egg. Journal of Biological Chemistry, 267(25), 17624–17630.
- Kodaka, M., & Hata, Y. (2015). The mammalian Hippo pathway: regulation and function of YAP1 and TAZ. Cellular and Molecular Life Sciences, 72(2), 285–306.
- Kolahi, K. S., & Mofrad, M. R. K. (2010). Mechanotransduction: a major regulator of homeostasis and development. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2(6), 625–639.
- Kowalewski, J. M., Uhlén, P., Kitano, H., & Brismar, H. (2006). Modeling the impact of store-operated Ca2+ entry on intracellular Ca2+ oscillations. Mathematical Biosciences, 204(2), 232–249.
- Kushida, N., Kabuyama, Y., Yamaguchi, O., & Homma, Y. (2001). Essential role for extracellular Ca2+ in JNK activation by mechanical stretch in bladder smooth muscle cells. American Journal of Physiology Cell Physiology, 281(4), C1165–C1172.
- Lampi, M. C., Faber, C. J., Huynh, J., Bordeleau, F., Zanotelli, M. R., & Reinhart-King, C. A. (2016). Simvastatin ameliorates matrix stiffness-mediated endothelial monolayer disruption. PLoS ONE, 11(1), e0147033.
- Lauffenburger, D. A. (2000). Cell signaling pathways as control modules: complexity for simplicity? PNAS, 97(10), 5031–5033.
- Lee, J.-H., Kim, T.-S., Yang, T.-H., Koo, B.-K., Oh, S.-P., Lee, K.-P., Oh, H.-J., Lee, S.-H., Kong, Y.-Y., Kim, J.-M., & Lim, D.-S. (2008). A crucial role of WW45 in developing epithelial tissues in the mouse. Embo Journal, 27(8), 1231–1242.
- Lee, J. Y., Chang, J. K., Dominguez, A. A., Lee, H.-P., Nam, S., Chang, J., Varma, S., Qi, L. S., West, R. B., & Chaudhuri, O. (2019). YAP-independent mechanotransduction drives breast cancer progression. Nature Communications, 10(1), 1848.
- Legewie, S., Herzel, H., Westerhoff, H. V., & Blüthgen, N. (2008). Recurrent design patterns in the feedback regulation of the mammalian signalling network. Molecular Systems Biology, 4(1), 190.
- Lessey, E. C., Guilluy, C., & Burridge, K. (2012). From mechanical force to RhoA activation. Biochemistry, 51(38), 7420–7432.
- Li, F., & Malik, K. U. (2005). Angiotensin II-induced Akt activation is mediated by metabolites of arachidonic acid generated by CaMKII-stimulated Ca2(+)-dependent phospholipase A2. American Journal of Physiology Heart and Circulatory Physiology, 288(5), H2306–H2316.
- Li, L., Ren, C. H., Tahir, S. A., Ren, C., & Thompson, T. C. (2003). Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Molecular and Cellular Biology, 23(24), 9389–9404.
- Liu, Z., Wei, Y., Zhang, L., Yee, P. P., Johnson, M., Zhang, X., Gulley, M., Atkinson, J. M., Trebak, M., Wang, H.-G., & Li, W. (2019). Induction of store-operated calcium entry (SOCE) suppresses glioblastoma growth by inhibiting the Hippo pathway transcriptional coactivators YAP/TAZ. Oncogene, 38(1), 120–139.
- Lomakin, A., Nader, G., & Piel, M. (2017). Forcing entry into the nucleus. Developmental Cell, 43(5), 547–548.
- Low, B. C., Pan, C. Q., Shivashankar, G. V., Bershadsky, A., Sudol, M., & Sheetz, M. (2014). YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumour growth. Febs Letters, 588(16), 2663–2670.
- Luik, R. M., Wang, B., Prakriya, M., Wu, M. M., & Lewis, R. S. (2008). Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature, 454(7203), 538–542.
- Lukas, T. J. (2004). A signal transduction pathway model prototype I: From agonist to cellular endpoint. Biophysical Journal, 87(3), 1406–1416.
- Ma, S., Meng, Z., Chen, R., & Guan, K.-L. (2019). The hippo pathway: Biology and pathophysiology. Annual Review of Biochemistry, 88(1), 577–604.
- Mammoto, A., Huang, S., Moore, K., Oh, P., & Ingber, D. E. (2004). Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition. Journal of Biological Chemistry, 279(25), 26323–26330.
- Maurya, M. R., & Subramaniam, S. (2007). A kinetic model for calcium dynamics in RAW 264.7 cells: 1. Mechanisms, parameters, and subpopulational variability. Biophysical Journal, 93(3), 709–728.
- Meng, Z., Moroishi, T., & Guan, K.-L. (2016). Mechanisms of Hippo pathway regulation. Genes & Development, 30(1), 1–17.
- Michalski, P. J. (2013). The delicate bistability of CaMKII. Biophysical Journal, 105(3), 794–806.
- Miller, C. J., & Davidson, L. A. (2013). The interplay between cell signalling and mechanics in developmental processes. Nature Reviews Genetics, 14(10), 733–744.
- Moraru, I. I., Schaff, J. C., Slepchenko, B. M., Blinov, M. L., Morgan, F., Lakshminarayana, A., Gao, F., Li, Y., & Loew, L. M. (2008). Virtual cell modelling and simulation software environment. Iet Systems Biology, 2(5), 352–362.
- Morgan, A. J., & Jacob, R. (1994). Ionomycin enhances Ca2+ influx by stimulating store-regulated cation entry and not by a direct action at the plasma membrane. Biochemical Journal, 300(3), 665–672.
- Moroishi, T., Park, H. W., Qin, B., Chen, Q., Meng, Z., Plouffe, S. W., Taniguchi, K., Yu, F.-X., Karin, M., Pan, D., & Guan, K.-L. (2015). A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes & Development, 29(12), 1271–1284.
- Mukherjee, R., Vanaja, K. G., Boyer, J. A., Gadal, S., Solomon, H., Chandarlapaty, S., Levchenko, A., & Rosen, N. (2021). Regulation of PTEN translation by PI3K signaling maintains pathway homeostasis. Molecular Cell, 81(4), 708–723.e5.
- Naito, T., Masaki, T., Nikolic-Paterson, D. J., Tanji, C., Yorioka, N., & Kohno, N. (2004). Angiotensin II induces thrombospondin-1 production in human mesangial cells via p38 MAPK and JNK: A mechanism for activation of latent TGF-beta1. American Journal of Physiology Renal Physiology, 286(2), F278-F287.
- Palazzo, A. F., Eng, C. H., Schlaepfer, D. D., Marcantonio, E. E., & Gundersen, G. G. (2004). Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science, 303(5659), 836–839.
- Pathak, M. M., Nourse, J. L., Tran, T., Hwe, J., Arulmoli, J., Le, D. T. T., Bernardis, E., Flanagan, L. A., & Tombola, F. (2014). Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. PNAS, 111(45), 16148–16153.
- Pi, H. J., & Lisman, J. E. (2008). Coupled phosphatase and kinase switches produce the tristability required for long-term potentiation and long-term depression. Journal of Neuroscience, 28(49), 13132–13138.
- Piccolo, S., Dupont, S., & Cordenonsi, M. (2014). The biology of YAP/TAZ: hippo signaling and beyond. Physiological Reviews, 94(4), 1287–1312.
- Pocaterra, A., Romani, P., & Dupont, S. (2020). YAP/TAZ functions and their regulation at a glance. Journal of Cell Science, 133(2), jcs.230425.
- Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33–57.
10.1007/s11721-007-0002-0 Google Scholar
- Pollard, T. D., Blanchoin, L., & Mullins, R. D. (2000). Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annual Review of Biophysics and Biomolecular Structure, 29(1), 545–576.
- Praskova, M., Khoklatchev, A., Ortiz-Vega, S., & Avruch, J. (2004). Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochemical Journal, 381(2), 453–462.
- Rangamani, P., Levy, M. G., Khan, S., & Oster, G. (2016). Paradoxical signaling regulates structural plasticity in dendritic spines. PNAS, 113(36), E5298–5307.
- Rodriguez, M. L., Beussman, K. M., Chun, K. S., Walzer, M. S., Yang, X., Murry, C. E., & Sniadecki, N. J. (2019). Substrate stiffness, cell anisotropy, and cell-cell contact contribute to enhanced structural and calcium handling properties of human embryonic stem cell-derived cardiomyocytes. ACS Biomaterials Science & Engineering, 5(8), 3876–3888.
- Romano, D., Nguyen, L. K., Matallanas, D., Halasz, M., Doherty, C., Kholodenko, B. N., & Kolch, W. (2014). Protein interaction switches coordinate Raf-1 and MST2/Hippo signalling. Nature Cell Biology, 16(7), 673–684.
- Sabri, A., Govindarajan, G., Griffin, T. M., Byron, K. L., Samarel, A. M., & Lucchesi, P. A. (1998). Calcium- and protein kinase C-dependent activation of the tyrosine kinase PYK2 by angiotensin II in vascular smooth muscle. Circulation Research, 83(8), 841–851.
- Sadoshima, J., & Izumo, S. (1993). Signal transduction pathways of angiotensin II–induced c-fos gene expression in cardiac myocytes in vitro. Roles of phospholipid-derived second messengers. Circulation Research, 73(3), 424–438.
- Scott, K. E., Fraley, S. I., & Rangamani, P. (2021). A spatial model of YAP/TAZ signaling reveals how stiffness, dimensionality, and shape contribute to emergent outcomes. PNAS, 118(20), e2021571118.
- Scott, K. E., Rychel, K., Ranamukhaarachchi, S., Rangamani, P., & Fraley, S. I. (2019). Emerging themes and unifying concepts underlying cell behaviour regulation by the pericellular space. Acta Biomaterialia, 96, 81–98.
- Seshacharyulu, P., Pandey, P., Datta, K., & Batra, S. K. (2013). Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Letters, 335(1), 9–18.
- Sharma, S., Goswami, R., Merth, M., Cohen, J., Lei, K. Y., Zhang, D. X., & Rahaman, S. O. (2017). TRPV4 ion channel is a novel regulator of dermal myofibroblast differentiation. American Journal of Physiology Cell Physiology, 312(5), C562–C572.
- Shin, S.-Y., & Nguyen, L. K. (2016). Unveiling hidden dynamics of hippo signalling: A systems analysis. Genes, 7(8), 44.
- Solon, J., Levental, I., Sengupta, K., Georges, P. C., & Janmey, P. A. (2007). Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophysical Journal, 93(12), 4453–4461.
- Spiering, D., & Hodgson, L. (2011). Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adhesion & Migration, 5(2), 170–180.
- Sun, M., Chi, G., Xu, J., Tan, Y., Xu, J., Lv, S., Xu, Z., Xia, Y., Li, L., & Li, Y. (2018). Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin α5. Stem Cell Research & Therapy, 9(1), 52.
- Sun, M., Spill, F., & Zaman, M. H. (2016). A computational model of YAP/TAZ mechanosensing. Biophysical Journal, 110(11), 2540–2550.
- Sun, Y., Deng, R., Zhang, K., Ren, X., Zhang, L., & Li, J. (2017). Single-cell study of the extracellular matrix effect on cell growth by in situ imaging of gene expression. Chemical Science, 8(12), 8019–8024.
- Swift, J., Ivanovska, I. L., Buxboim, A., Harada, T., Dingal, P., Pinter, J., Pajerowski, J. D., Spinler, K. R., Shin, J.-W., Tewari, M., Rehfeldt, F., Speicher, D. W., & Discher, D. E. (2013). Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science, 341(6149), 1240104.
- Tajada, S., & Villalobos, C. (2020). Calcium permeable channels in cancer hallmarks. Frontiers in Pharmacology, 11, 968.
- Timmins, J. M., Ozcan, L., Seimon, T. A., Li, G., Malagelada, C., Backs, J., Backs, T., Bassel-Duby, R., Olson, E. N., Anderson, M. E., & Tabas, I. (2009). Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. Journal of Clinical Investigation, 119(10), 2925–2941.
- Totaro, A., Panciera, T., & Piccolo, S. (2018). YAP/TAZ upstream signals and downstream responses. Nature Cell Biology, 20(8), 888–899.
- Urtreger, A. J., Kazanietz, M. G., & Bal de Kier Joffé, E. D. (2012). Contribution of individual PKC isoforms to breast cancer progression. Iubmb Life, 64(1), 18–26.
- Wang, X., Cai, B., Yang, X., Sonubi, O. O., Zheng, Z., Ramakrishnan, R., Shi, H., Valenti, L., Pajvani, U. B., Sandhu, J., Infante, R. E., Radhakrishnan, A., Covey, D. F., Guan, K.-L., Buck, J., Levin, L. R., Tontonoz, P., Schwabe, R. F., & Tabas, I. (2020). Cholesterol stabilizes TAZ in hepatocytes to promote experimental non-alcoholic steatohepatitis. Cell Metabolism, 31(5), 969–986.e7.
- Wang, Y., Sherrard, A., Zhao, B., Melak, M., Trautwein, J., Kleinschnitz, E.-M., Tsopoulidis, N., Fackler, O. T., Schwan, C., & Grosse, R. (2019). GPCR-induced calcium transients trigger nuclear actin assembly for chromatin dynamics. Nature Communications, 10(1), 5271.
- Wang, Z., Sun, L., Liang, S., Liu, Z.-C., Zhao, Z.-Y., Yang, J., Wang, D., & Yang, D.-Q. (2019). GPER stabilizes F-actin cytoskeleton and activates TAZ via PLCβ-PKC and Rho/ROCK-LIMK-Cofilin pathway. Biochemical and Biophysical Research Communications, 516(3), 976–982.
- Wei, Y., & Li, W. (2021). Calcium, an emerging intracellular messenger for the hippo pathway regulation. Frontiers in Cell and Developmental Biology, 9, 694828.
- Wei, Y., Yee, P. P., Liu, Z., Zhang, L., Guo, H., Zheng, H., Anderson, B., Gulley, M., & Li, W. (2020). NEDD4L-mediated Merlin ubiquitination facilitates Hippo pathway activation. Embo Reports, 21(12), e50642.
- Yasuda, R., Hayashi, Y., & Hell, J. W. (2022). CaMKII: A central molecular organizer of synaptic plasticity, learning and memory. Nature Reviews Neuroscience, 23(11), 666–682.
- Ying, Z., Giachini, F. R. C., Tostes, R. C., & Webb, R. C. (2009). PYK2/PDZ-RhoGEF links Ca2+ signaling to RhoA. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(10), 1657–1663.
- Yu, F.-X., Zhao, B., Panupinthu, N., Jewell, J. L., Lian, I., Wang, L. H., Zhao, J., Yuan, H., Tumaneng, K., Li, H., Fu, X.-D., Mills, G. B., & Guan, K.-L. (2012). Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell, 150(4), 780–791.
- Yu, M., Yuan, X., Lu, C., Le, S., Kawamura, R., Efremov, A. K., Zhao, Z., Kozlov, M. M., Sheetz, M., Bershadsky, A., & Yan, J. (2017). mDia1 senses both force and torque during F-actin filament polymerization. Nature Communications, 8(1), 1650.
- Zanconato, F., Cordenonsi, M., & Piccolo, S. (2016). YAP/TAZ at the roots of cancer. Cancer Cell, 29(6), 783–803.
- Zhabotinsky, A. M. (2000). Bistability in the Ca2+/calmodulin-dependent protein kinase-phosphatase system. Biophysical Journal, 79(5), 2211–2221.
- Zhang, J., Xu, Q., Ren, F., Liu, Y., Cai, R., Yao, Y., & Zhou, M.-S. (2021). Inhibition of YAP activation attenuates renal injury and fibrosis in angiotensin II hypertensive mice. Canadian Journal of Physiology and Pharmacology, 99(10), 1000–1006.
- Zhao, J.-W., Gao, Z.-L., Ji, Q.-Y., Wang, H., Zhang, H.-Y., Yang, Y.-D., Xing, F.-J., Meng, L.-J., & Wang, Y. (2012). Regulation of cofilin activity by CaMKII and calcineurin. American Journal of the Medical Sciences, 344(6), 462–472.
- Zhong, W., Chebolu, S., & Darmani, N. A. (2016). Thapsigargin-induced activation of Ca(2+)-CaMKII-ERK in brainstem contributes to substance P release and induction of emesis in the least shrew. Neuropharmacology, 103, 195–210.
- Zhou, C., Ramaswamy, S. S., Johnson, D. E., Vitturi, D. A., Schopfer, F. J., Freeman, B. A., Hudmon, A., & Levitan, E. S. (2016). Novel roles for peroxynitrite in angiotensin II and CaMKII signaling. Scientific Reports, 6(1), 23416.
- Zhu, W., Zou, Y., Shiojima, I., Kudoh, S., Aikawa, R., Hayashi, D., Mizukami, M., Toko, H., Shibasaki, F., Yazaki, Y., Nagai, R., & Komuro, I. (2000). Ca2+/calmodulin-dependent kinase II and calcineurin play critical roles in endothelin-1-induced cardiomyocyte hypertrophy. Journal of Biological Chemistry, 275(20), 15239–15245.