In vivo low-intensity magnetic pulses durably alter neocortical neuron excitability and spontaneous activity
Manon Boyer
Sorbonne Université & CNRS, IBPS-B2A, UMR 8256 Biological Adaptation and Ageing, Paris, France
Sorbonne Université, Paris Brain Institute–ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, team ‘Network dynamics and cellular excitability’, Paris, France
Search for more papers by this authorPaul Baudin
Sorbonne Université, Paris Brain Institute–ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, team ‘Network dynamics and cellular excitability’, Paris, France
Search for more papers by this authorChloé Stengel
Sorbonne Université, Paris Brain Institute–ICM, INSERM, CNRS, Pitié-Salpêtrière Hospital, team Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, Paris, France
Search for more papers by this authorAntoni Valero-Cabré
Sorbonne Université, Paris Brain Institute–ICM, INSERM, CNRS, Pitié-Salpêtrière Hospital, team Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, Paris, France
Search for more papers by this authorAnn M. Lohof
Sorbonne Université & CNRS, IBPS-B2A, UMR 8256 Biological Adaptation and Ageing, Paris, France
Search for more papers by this authorStéphane Charpier
Sorbonne Université, Paris Brain Institute–ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, team ‘Network dynamics and cellular excitability’, Paris, France
Search for more papers by this authorCorresponding Author
Rachel M. Sherrard
Sorbonne Université & CNRS, IBPS-B2A, UMR 8256 Biological Adaptation and Ageing, Paris, France
Corresponding authors R. M. Sherrard: UMR 8256 Biological Adaptation and Ageing, Boite 256, Sorbonne Université, 9 Quai St Bernard, 75005 Paris, France. Email: [email protected]
Severine Mahon: Paris Brain Institute–ICM, INSERM U1127, Pitié-Salpêtrière Hospital, Paris 75013 France. Email: [email protected]
Search for more papers by this authorCorresponding Author
Séverine Mahon
Sorbonne Université, Paris Brain Institute–ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, team ‘Network dynamics and cellular excitability’, Paris, France
Corresponding authors R. M. Sherrard: UMR 8256 Biological Adaptation and Ageing, Boite 256, Sorbonne Université, 9 Quai St Bernard, 75005 Paris, France. Email: [email protected]
Severine Mahon: Paris Brain Institute–ICM, INSERM U1127, Pitié-Salpêtrière Hospital, Paris 75013 France. Email: [email protected]
Search for more papers by this authorManon Boyer
Sorbonne Université & CNRS, IBPS-B2A, UMR 8256 Biological Adaptation and Ageing, Paris, France
Sorbonne Université, Paris Brain Institute–ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, team ‘Network dynamics and cellular excitability’, Paris, France
Search for more papers by this authorPaul Baudin
Sorbonne Université, Paris Brain Institute–ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, team ‘Network dynamics and cellular excitability’, Paris, France
Search for more papers by this authorChloé Stengel
Sorbonne Université, Paris Brain Institute–ICM, INSERM, CNRS, Pitié-Salpêtrière Hospital, team Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, Paris, France
Search for more papers by this authorAntoni Valero-Cabré
Sorbonne Université, Paris Brain Institute–ICM, INSERM, CNRS, Pitié-Salpêtrière Hospital, team Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, Paris, France
Search for more papers by this authorAnn M. Lohof
Sorbonne Université & CNRS, IBPS-B2A, UMR 8256 Biological Adaptation and Ageing, Paris, France
Search for more papers by this authorStéphane Charpier
Sorbonne Université, Paris Brain Institute–ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, team ‘Network dynamics and cellular excitability’, Paris, France
Search for more papers by this authorCorresponding Author
Rachel M. Sherrard
Sorbonne Université & CNRS, IBPS-B2A, UMR 8256 Biological Adaptation and Ageing, Paris, France
Corresponding authors R. M. Sherrard: UMR 8256 Biological Adaptation and Ageing, Boite 256, Sorbonne Université, 9 Quai St Bernard, 75005 Paris, France. Email: [email protected]
Severine Mahon: Paris Brain Institute–ICM, INSERM U1127, Pitié-Salpêtrière Hospital, Paris 75013 France. Email: [email protected]
Search for more papers by this authorCorresponding Author
Séverine Mahon
Sorbonne Université, Paris Brain Institute–ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, team ‘Network dynamics and cellular excitability’, Paris, France
Corresponding authors R. M. Sherrard: UMR 8256 Biological Adaptation and Ageing, Boite 256, Sorbonne Université, 9 Quai St Bernard, 75005 Paris, France. Email: [email protected]
Severine Mahon: Paris Brain Institute–ICM, INSERM U1127, Pitié-Salpêtrière Hospital, Paris 75013 France. Email: [email protected]
Search for more papers by this authorHandling Editors: David Wyllie & Jing-Ning Zhu
The peer review history is available in the Supporting Information section of this article (https://doi.org/10.1113/JP283244#support-information-section).
R. M. Sherrard and S. Mahon contributed equally to this work.
This article was first published as a preprint. Boyer M, Baudin P, Stengel C, Valero-Cabré A, Lohof AM, Charpier S, Sherrard RM & Mahon S. 2022. In vivo low-intensity magnetic pulses durably alter neocortical neuron excitability and spontaneous activity. bioRxiv DOI: 10.1101/2022.03.18.484911
Abstract
Key points
- Repetitive transcranial magnetic stimulation (rTMS) is a promising technique to alleviate neurological and psychiatric disorders caused by alterations in cortical activity.
- Our knowledge of the cellular mechanisms underlying rTMS-based therapies remains limited.
- We combined in vivo focal application of low-intensity rTMS (LI-rTMS) to the rat somatosensory cortex with intracellular recordings of subjacent pyramidal neurons to characterize the effects of weak magnetic fields at single cell level.
- Ten minutes of LI-rTMS delivered at 10 Hz reliably evoked action potentials in cortical neurons during the stimulation period, and induced durable attenuation of their intrinsic excitability, synaptic activity and spontaneous firing.
- These results help us better understand the mechanisms of weak magnetic stimulation and should allow optimizing the effectiveness of stimulation protocols for clinical use.
Open Research
Data availability statement
All data are available in the main text.
Supporting Information
Filename | Description |
---|---|
tjp15210-sup-0001-SuppMat.xlsx66.7 KB | Statistical Summary Document |
tjp15210-sup-0002-PeerReview.pdf416.3 KB | Peer Review History |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Altwegg-Boussac, T., Chavez, M., Mahon, S., & Charpier, S. (2014). Excitability and responsiveness of rat barrel cortex neurons in the presence and absence of spontaneous synaptic activity in vivo. Journal of Physiology, 592(16), 3577–3595.
- Altwegg-Boussac, T., Schramm, A. E., Ballestero, J., Grosselin, F., Chavez, M., Lecas, S., Baulac, M., Naccache, L., Demeret, S., Navarro, V., Mahon, S., & Charpier, S. (2017). Cortical neurons and networks are dormant but fully responsive during isoelectric brain state. Brain, 140(9), 2381–2398.
- Amengual, J. L., Vernet, M., Adam, C., & Valero-Cabré, A. (2017). Local entrainment of oscillatory activity induced by direct brain stimulation in humans. Scientific Reports, 7(1), 41908.
- Banerjee, J., Sorrell, M. E., Celnik, P. A., & Pelled, G. (2017). Immediate effects of repetitive magnetic stimulation on single cortical pyramidal neurons. PLoS One, 12(1), e0170528.
- Benardo, L. S., Masukawa, L. M., & Prince, D. A. (1982). Electrophysiology of isolated hippocampal pyramidal dendrites. Journal of Neuroscience, 2(11), 1614–1622.
- Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B Methodology, 57, 289–300.
10.1111/j.2517-6161.1995.tb02031.x Google Scholar
- Bhattacharya, A., Mrudula, K., Sreepada, S. S., Sathyaprabha, T. N., Pal, P. K., Chen, R., & Udupa, K. (2021). An overview of noninvasive brain stimulation: Basic principles and clinical applications. Canadian Journal of Neurological Sciences, 49(4), 479–492.
- Bonmassar, G., Lee, S. W., Freeman, D. K., Polasek, M., Fried, S. I., & Gale, J. T. (2012). Microscopic magnetic stimulation of neural tissue. Nature Communications, 3(1), 921.
- Bradley, C., Nydam, A. S., Dux, P. E., & Mattingley, J. B. (2022). State-dependent effects of neural stimulation on brain function and cognition. Nature Reviews. Neuroscience, 23(8), 459–475.
- Brecht, M., Roth, A., & Sakmann, B. (2003). Dynamic receptive fields of reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex. Journal of Physiology, 553(1), 243–265.
- Bruno, R. M., & Sakmann, B. (2006). Cortex is driven by weak but synchronously active thalamocortical synapses. Science, 312(5780), 1622–1627.
- Carton-Leclercq, A., Lecas, S., Chavez, M., Charpier, S., & Mahon, S. (2021). Neuronal excitability and sensory responsiveness in the thalamo-cortical network in a novel rat model of isoelectric brain state. Journal of Physiology, 599(2), 609–629.
- Chan, C. Y., & Nicholson, C. (1986). Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. Journal of Physiology, 371(1), 89–114.
- Chong, C. T., Manninen, P., Sivanaser, V., Subramanyam, R., Lu, N., & Venkatraghavan, L. (2014). Direct comparison of the effect of desflurane and sevoflurane on intraoperative motor-evoked potentials monitoring. Journal of Neurosurgical Anesthesiology, 26(4), 306–312.
- Cirillo, G., Di Pino, G., Capone, F., Ranieri, F., Florio, L., Todisco, V., Tedeschi, G., Funke, K., & Di Lazzaro, V. (2017). Neurobiological after-effects of non-invasive brain stimulation. Brain Stimulation, 10(1), 1–18.
- Connors, B. W., & Prince, D. A. (1982). Effects of local anesthetic QX-314 on the membrane properties of hippocampal pyramidal neurons. Journal of Pharmacology and Experimental Therapeutics, 220, 476–481.
- Constantinople, C. M., & Bruno, R. M. (2011). Effects and mechanisms of wakefulness on local cortical networks. Neuron, 69(6), 1061–1068.
- Cook, C. M., Saucier, D. M., Thomas, A. W., & Prato, F. S. (2009). Changes in human EEG alpha activity following exposure to two different pulsed magnetic field sequences. Bioelectromagnetics, 30(1), 9–20.
- Delord, B., Berry, H., Guigon, E., & Genet, S. (2007). A new principle for information storage in an enzymatic pathway model. PLoS Computational Biology, 3(6), e124.
- Depaulis, A., David, O., & Charpier, S. (2016). The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies. Journal of Neuroscience Methods, 260, 159–174.
- Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Reviews. Neuroscience, 4(9), 739–751.
- Di Lazzaro, V., Capone, F., Apollonio, F., Borea, P. A., Cadossi, R., Fassina, L., Grassi, C., Liberti, M., Paffi, A., Parazzini, M., Varani, K., & Ravazzani, P. (2013). A consensus panel review of central nervous system effects of the exposure to low-intensity extremely low-frequency magnetic fields. Brain Stimulation, 6(4), 469–476.
- Dufor, T., Grehl, S., Tang, A. D., Doulazmi, M., Traoré, M., Debray, N., Dubacq, C., Deng, Z.-D., Mariani, J., & Lohof, A. M. (2019). Neural circuit repair by low-intensity magnetic stimulation requires cellular magnetoreceptors and specific stimulation patterns. Science Advances, 5(10), eaav9847.
- Eccles, J. C. (2013). The Physiology of Synapses. Academic Press.
- Gersner, R., Kravetz, E., Feil, J., Pell, G., & Zangen, A. (2011). Long-term effects of repetitive transcranial magnetic stimulation on markers for neuroplasticity: Differential outcomes in anesthetized and awake animals. Journal of Neuroscience, 31(20), 7521–7526.
- Görlach, A., Bertram, K., Hudecova, S., & Krizanova, O. (2015). Calcium and ROS: A mutual interplay. Redox Biology, 6, 260–271.
- Grehl, S., Martina, D., Goyenvalle, C., Deng, Z.-D., Rodger, J., & Sherrard, R. M. (2016). In vitro magnetic stimulation: A simple stimulation device to deliver defined low intensity electromagnetic fields. Frontiers in Neural Circuits, 10, 85.
- Grehl, S., Viola, H. M., Fuller-Carter, P. I., Carter, K. W., Dunlop, S. A., Hool, L. C., Sherrard, R. M., & Rodger, J. (2015). Cellular and molecular changes to cortical neurons following low intensity repetitive magnetic stimulation at different frequencies. Brain Stimulation, 8(1), 114–123.
- Grundy, D. (2015). Principles and standards for reporting animal experiments in The Journal of Physiology and Experimental Physiology. Journal of Physiology, 593(12), 2547–2549.
- Hoppenrath, K., Härtig, W., & Funke, K. (2016). Intermittent theta-burst transcranial magnetic stimulation alters electrical properties of fast-spiking neocortical interneurons in an age-dependent fashion. Frontiers in Neural Circuits, 10, 22.
- Huang, Y.-Z., Edwards, M. J., Rounis, E., Bhatia, K. P., & Rothwell, J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron, 45(2), 201–206.
- Kimiskidis, V. K., Valentin, A., & Kälviäinen, R. (2014). Transcranial magnetic stimulation for the diagnosis and treatment of epilepsy. Current Opinion in Neurology, 27(2), 236–241.
- Kole, M. H. P., Ilschner, S. U., Kampa, B. M., Williams, S. R., Ruben, P. C., & Stuart, G. J. (2008). Action potential generation requires a high sodium channel density in the axon initial segment. Nature Neuroscience, 11(2), 178–186.
- Lenz, M., Platschek, S., Priesemann, V., Becker, D., Willems, L. M., Ziemann, U., Deller, T., Müller-Dahlhaus, F., Jedlicka, P., & Vlachos, A. (2015). Repetitive magnetic stimulation induces plasticity of excitatory postsynapses on proximal dendrites of cultured mouse CA1 pyramidal neurons. Brain Structure & Function, 220(6), 3323–3337.
- Lenz, M., & Vlachos, A. (2016). Releasing the cortical brake by non-invasive electromagnetic stimulation? rTMS Induces LTD of GABAergic neurotransmission. Frontiers in Neural Circuits, 10, 96.
- Li, C., Lu, J., Wu, C., Duan, S., & Poo, M. (2004). Bidirectional modification of presynaptic neuronal excitability accompanying spike timing-dependent synaptic plasticity. Neuron, 41, 257–268.
- Lombardo, J., Sun, J., & Harrington, M. A. (2018). Rapid activity-dependent modulation of the intrinsic excitability through up-regulation of KCNQ/Kv7 channel function in neonatal spinal motoneurons. PLoS One, 13, e0193948.
- Mahon, S., & Charpier, S. (2012). Bidirectional plasticity of intrinsic excitability controls sensory inputs efficiency in layer 5 barrel cortex neurons in vivo. Journal of Neuroscience, 32(33), 11377–11389.
- Mahon, S., Deniau, J.-M., & Charpier, S. (2004). Corticostriatal plasticity: Life after the depression. Trends in Neurosciences, 27(8), 460–467.
- Makowiecki, K., Harvey, A. R., Sherrard, R. M., & Rodger, J. (2014). Low-intensity repetitive transcranial magnetic stimulation improves abnormal visual cortical circuit topography and upregulates BDNF in mice. Journal of Neuroscience, 34(32), 10780–10792.
- Manns, I. D., Sakmann, B., & Brecht, M. (2004). Sub- and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex. Journal of Physiology, 556(2), 601–622.
- Massimini, M., Ferrarelli, F., Murphy, M., Huber, R., Riedner, B., Casarotto, S., & Tononi, G. (2010). Cortical reactivity and effective connectivity during REM sleep in humans. Cognitive Neuroscience, 1(3), 176–183.
- Mix, A., Hoppenrath, K., & Funke, K. (2015). Reduction in cortical parvalbumin expression due to intermittent theta-burst stimulation correlates with maturation of the perineuronal nets in young rats. Developmental Neurobiology, 75(1), 1–11.
- Müller-Dahlhaus, F., & Vlachos, A. (2013). Unraveling the cellular and molecular mechanisms of repetitive magnetic stimulation. Frontiers in Molecular Neuroscience, 6, 50.
- Niemegeers, C. J., Schellekens, K. H., Van Bever, W. F., & Janssen, P. A. (1976). Sufentanil, a very potent and extremely safe intravenous morphine-like compound in mice, rats and dogs. Arzneimittelforschung, 26, 1551–1556.
- Naudé, J., Paz, J. T., Berry, H., & Delord, B. (2012). A theory of rate coding control by intrinsic plasticity effects. PLoS Computational Biology, 8, e1002349.
- Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 156869.
- Pashut, T., Magidov, D., Ben-Porat, H., Wolfus, S., Friedman, A., Perel, E., Lavidor, M., Bar-Gad, I., Yeshurun, Y., & Korngreen, A. (2014). Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation. Frontiers in Cellular Neuroscience, 8, 145.
- Pasley, B. N., Allen, E. A., & Freeman, R. D. (2009). State-dependent variability of neuronal responses to transcranial magnetic stimulation of the visual cortex. Neuron, 62(2), 291–303.
- Paxinos, G., & Watson, C. (1986). The rat brain in stereotaxic coordinates: Hard cover edition. Elsevier.
- Poh, E. Z., Harvey, A. R., Makowiecki, K., & Rodger, J. (2018). Online LI-rTMS during a visual learning task: Differential impacts on visual circuit and behavioral plasticity in adult ephrin-A2A5-/- mice. eNeuro, 5(1), ENEURO.0163-17.2018.
- Poh, E. Z., Green, C., Agostinelli, L., Penrose-Menz, M., Karl, A.-K., Harvey, A. R., & Rodger (2022). Manipulating the level of sensorimotor stimulation during LI-rTMS can improve visual circuit reorganisation in adult ephrin-A2A5-/- Mice. International Journal of Molecular Sciences, 23(5), 2418.
- Radman, T., Ramos, R. L., Brumberg, J. C., & Bikson, M. (2009). Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimulation, 2(4), 215–228.e3.
- Rodger, J., Mo, C., Wilks, T., Dunlop, S. A., & Sherrard, R. M. (2012). Transcranial pulsed magnetic field stimulation facilitates reorganization of abnormal neural circuits and corrects behavioral deficits without disrupting normal connectivity. FASEB Journal, 26(4), 1593–1606.
- Rohan, M. L., Yamamoto, R. T., Ravichandran, C. T., Cayetano, K. R., Morales, O. G., Olson, D. P., Vitaliano, G., Paul, S. M., & Cohen, B. M. (2014). Rapid mood-elevating effects of low field magnetic stimulation in depression. Biological Psychiatry, 76(3), 186–193.
- Rossini, P. M., Burke, D., Chen, R., Cohen, L. G., Daskalakis, Z., Di Iorio, R., Di Lazzaro, V., Ferreri, F., Fitzgerald, P. B., George, M. S., Hallett, M., Lefaucheur, J. P., Langguth, B., Matsumoto, H., Miniussi, C., Nitsche, M. A., Pascual-Leone, A., Paulus, W., Rossi, S., … Ziemann, U. (2015). Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clinical Neurophysiology, 126(6), 1071–1107.
- Rotem, A., & Moses, E. (2008). Magnetic stimulation of one-dimensional neuronal cultures. Biophysical Journal, 94(12), 5065–5078.
- Sahin, M., Bowen, W. D., & Donoghue, J. P. (1992). Location of nicotinic and muscarinic cholinergic and mu-opiate receptors in rat cerebral neocortex: Evidence from thalamic and cortical lesions. Brain Research, 579(1), 135–147.
- Schramm, A. E., Carton-Leclercq, A., Diallo, S., Navarro, V., Chavez, M., Mahon, S., & Charpier, S. (2020). Identifying neuronal correlates of dying and resuscitation in a model of reversible brain anoxia. Progress in Neurobiology, 185, 101733.
- Sherrard, R. M., Morellini, N., Jourdan, N., El-Esawi, M., Arthaut, L.-D., Niessner, C., Rouyer, F., Klarsfeld, A., Doulazmi, M., Witczak, J., d'Harlingue, A., Mariani, J., Mclure, I., Martino, C. F., & Ahmad, M. (2018). Low-intensity electromagnetic fields induce human cryptochrome to modulate intracellular reactive oxygen species. PLoS Biology, 16(10), e2006229.
- Silvanto, J., & Pascual-Leone, A. (2008). State-dependency of transcranial magnetic stimulation. Brain Topography, 21(1), 1–10.
- Silver, R. A. (2010). Neuronal arithmetic. Nature Reviews. Neuroscience, 11(7), 474–489.
- Simons, D. J., Carvell, G. E., Hershey, A. E., & Bryant, D. P. (1992). Responses of barrel cortex neurons in awake rats and effects of urethane anesthesia. Experimental Brain Research, 91(2), 259–272.
- Stengel, C., Vernet, M., Amengual, J. L., & Valero-Cabré, A. (2021). Causal modulation of right hemisphere fronto-parietal phase synchrony with Transcranial Magnetic Stimulation during a conscious visual detection task. Scientific Reports, 11(1), 3807.
- Steriade, M. (2004). Neocortical cell classes are flexible entities. Nature Reviews. Neuroscience, 5(2), 121–134.
- Sykes, M., Matheson, N. A., Brownjohn, P. W., Tang, A. D., Rodger, J., Shemmell, J. B. H., & Reynolds, J. N. J. (2016). Differences in motor evoked potentials induced in rats by transcranial magnetic stimulation under two separate anesthetics: Implications for plasticity studies. Frontiers in Neural Circuits, 10, 80.
- Tang, A. D., Hong, I., Boddington, L. J., Garrett, A. R., Etherington, S., Reynolds, J. N. J., & Rodger, J. (2016). Low-intensity repetitive magnetic stimulation lowers action potential threshold and increases spike firing in layer 5 pyramidal neurons in vitro. Neuroscience, 335, 64–71.
- Tremblay, R., Lee, S., & Rudy, B. (2016). GABAergic interneurons in the neocortex: From cellular properties to circuits. Neuron, 91(2), 260–292.
- Vlachos, A., Müller-Dahlhaus, F., Rosskopp, J., Lenz, M., Ziemann, U., & Deller, T. (2012). Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. Journal of Neuroscience, 32(48), 17514–17523.
- Wang, X., Wang, T., Jin, J., Wang, H., Li, Y., Liu, Z., & Yin, T. (2022). Anesthesia inhibited corticospinal excitability and attenuated the modulation of repetitive transcranial magnetic stimulation. BMC Anesthesiology, 22(1), 111.
- Wilent, W. B., & Contreras, D. (2004). Synaptic responses to whisker deflections in rat barrel cortex as a function of cortical layer and stimulus intensity. Journal of Neuroscience, 24(16), 3985–3998.
- Williams, M. S., Altwegg-Boussac, T., Chavez, M., Lecas, S., Mahon, S., & Charpier, S. (2016). Integrative properties and transfer function of cortical neurons initiating absence seizures in a rat genetic model. Journal of Physiology, 594(22), 6733–6751.
- Wilson, C. J., & Kawaguchi, Y. (1996). The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. Journal of Neuroscience, 16(7), 2397–2410.
- Xu, J., & Kang, J. (2005). The mechanisms and functions of activity-dependent long-term potentiation of intrinsic excitability. Reviews in the Neurosciences, 16(4), 311–323.
- Zhu, J. J., & Connors, B. W. (1999). Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. Journal of Neurophysiology, 81(3), 1171–1183.