Translational neurocardiology: preclinical models and cardioneural integrative aspects
Corresponding Author
J. L. Ardell
University of California – Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA
UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
Corresponding author J. L. Ardell: Department of Medicine (Cardiology), UCLA Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA. Email: [email protected]Search for more papers by this authorM. C. Andresen
Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
Search for more papers by this authorJ. A. Armour
University of California – Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA
UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
Search for more papers by this authorG. E. Billman
Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
Search for more papers by this authorP.-S. Chen
The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
Search for more papers by this authorR. D. Foreman
Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
Search for more papers by this authorN. Herring
Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
Search for more papers by this authorD. S. O'Leary
Department of Physiology, Wayne State University, Detroit, MI, USA
Search for more papers by this authorH. N. Sabbah
Department of Medicine, Henry Ford Hospital, Detroit, MI, USA
Search for more papers by this authorH. D. Schultz
Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
Search for more papers by this authorK. Sunagawa
Department of Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
Search for more papers by this authorI. H. Zucker
Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
Search for more papers by this authorCorresponding Author
J. L. Ardell
University of California – Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA
UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
Corresponding author J. L. Ardell: Department of Medicine (Cardiology), UCLA Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA. Email: [email protected]Search for more papers by this authorM. C. Andresen
Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
Search for more papers by this authorJ. A. Armour
University of California – Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA
UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
Search for more papers by this authorG. E. Billman
Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
Search for more papers by this authorP.-S. Chen
The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
Search for more papers by this authorR. D. Foreman
Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
Search for more papers by this authorN. Herring
Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
Search for more papers by this authorD. S. O'Leary
Department of Physiology, Wayne State University, Detroit, MI, USA
Search for more papers by this authorH. N. Sabbah
Department of Medicine, Henry Ford Hospital, Detroit, MI, USA
Search for more papers by this authorH. D. Schultz
Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
Search for more papers by this authorK. Sunagawa
Department of Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
Search for more papers by this authorI. H. Zucker
Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
Search for more papers by this authorAbstract
Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various ‘levels’ become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics.
References
- Abdala AP, McBryde FD, Marina N, Hendy EB, Engelman ZJ, Fudim M, Sobotka PA, Gourine AV & Paton JF (2012). Hypertension is critically dependent on the carotid body input in the spontaneously hypertensive rat. J Physiol 590, 4269–4277.
- Abraham WT, Zile MR, Weaver FA, Butter C, Ducharme A, Halbach M, Klug D, Lovett EG, Müller-Ehmsen J, Schafer JE, Senni M, Swarup V, Wachter R & Little WC (2015). Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. JACC Heart Fail 3, 487–496.
- Affleck VS, Coote JH & Pyner S (2012). The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus. Neuroscience 219, 48–61.
- Ahonen A, Harkonen M, Juntunen J, Kormano M & Penttila A (1975). Effects of myocardial infarction on adrenergic nerves of the rat heart muscle, a histochemical study. Acta Physiol Scand 93, 336–344.
- Ajijola OA, Lellouche N, Bourke T, Tung R, Ahn S, Mahajan A & Shivkumar K (2012). Bilateral cardiac sympathetic denervation for the management of electrical storm. J Am Coll Cardiol 59, 91–92.
- Ajijola OA, Vaseghi M, Zhou W, Yamakawa K, Benharash P, Hadaya J, Lux RL, Mahajan A & Shivkumar K (2013). Functional differences between junctional and extrajunctional adrenergic receptor activation in mammalian ventricle. Am J Physiol Heart Circ Physiol 304, H579–H588.
- Ajijola OA, Yagishita D, Reddy NK, Yamakawa K, Vaseghi M, Downs AM, Hoover DB, Ardell JL & Shivkumar K (2015). Remodeling of stellate ganglion neurons after spatially targeted myocardial infarction: Neuropeptide and morphologic changes. Heart Rhythm 12, 1027–1035.
- Amann M, Runnels S, Morgan DE, Trinity JD, Fjeldstad AS, Wray DW, Reese VR & Richardson RS (2011). On the contribution of group III and IV muscle afferents to the circulatory response to rhythmic exercise in humans. J Physiol 589, 3855–3866.
- Anand A (1996). Reflex stimulation of aortic chemoreceptors through the stellate ganglion during hypoxia and hypotension in cats. J Physiol 491, 853–858.
- Ando M, Katare RG, Kakinuma Y, Zhang D, Yamasaki F, Muramoto K & Sato T (2005). Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein. Circulation 112, 164–170.
- Andresen MC, Hofmann ME & Fawley JA (2012). The unsilent majority-TRPV1 drives ‘spontaneous’ transmission of unmyelinated primary afferents within cardiorespiratory NTS. Am J Physiol Regul Integr Comp Physiol 303, R1207–R1216.
- Andresen MC & Kunze DL (1994). Nucleus tractus solitarius – gateway to neural circulatory control. Annu Rev Physiol 56, 93–116.
- Andresen MC, Kunze DL & Mendelowitz D (2004). Central nervous system regulation of the heart. In Basic and Clincial Neurocardiology, ed. JA Armour & JL Ardell, pp. 187–219. Oxford University Press, New York.
10.1093/oso/9780195141290.003.0006 Google Scholar
- Andresen MC & Peters JH (2008). Comparison of baroreceptive to other afferent synaptic transmission to the medial solitary tract nucleus. Am J Physiol Heart Circ Physiol 295, H2032–H2042.
- Antoni ML, Boden H, Hoogslag GE, Ewe SH, Auger D, Holman ER, van der Wall EE, Schalij MJ, Bax JJ & Delgado V (2011). Prevalence of dyssynchrony and relation with long-term outcome in patients after acute myocardial infarction. Am J Cardiol 108, 1689–1696.
- Ardell JL (2004). Intrathoracic neuronal regulation of cardiac function. In Basic and Clinical Neurocardiology, ed. JA Armour & JL Ardell, pp. 118–152. Oxford University Press, New York.
10.1093/oso/9780195141290.003.0004 Google Scholar
- Ardell JL (2016). Heart failure: Mechanisms of spinal cord neuromodulation for heart disease. Nat Rev Cardiol 13, 127–128.
- Ardell JL, Barman SM & Gebber GL (1982). Sympathetic nerve discharge in chronic spinal cat. Am J Physiol 243, H463–H470.
- Ardell JL, Butler CK, Smith FM, Hopkins DA & Armour JA (1991). Activity of in vivo atrial and ventricular neurons in chronically decentralized canine hearts. Am J Physiol 260, H713–H721.
- Ardell JL, Cardinal R, Beaumont E, Vermeulen M, Smith FM & Armour JA (2014). Chronic spinal cord stimulation modifies intrinsic cardiac synaptic efficacy in the suppression of atrial fibrillation. Auton Neurosci 186, 38–44.
- Ardell JL, Cardinal R, Vermeulen M & Armour JA (2009). Dorsal spinal cord stimulation obtunds the capacity of intrathoracic extracardiac neurons to transduce myocardial ischemia. Am J Physiol Regul Integr Comp Physiol 297, R470–R477.
- Ardell JL, Rajendran PS, Nier HA, KenKnight BH & Armour JA (2015). Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function. Am J Physiol Heart Circ Physiol 309, H1740–H1752.
- Ardell JL & Randall WC (1986). Selective vagal innervation of sinoatrial and atrioventricular nodes in canine heart. Am J Physiol 251, H764–H773.
- Ardell JL, Randall WC, Cannon WJ, Schmacht DC & Tasdemiroglu E (1988). Differential sympathetic regulation of automatic, conductile, and contractile tissue in dog heart. Am J Physiol 255, H1050–H1059.
- Armour JA (1983). Synaptic transmission in the chronically decentralized middle cervical and stellate ganglia of the dog. Can J Physiol Pharmacol 61, 1149–1155.
- Armour JA (1985). Activity of in situ middle cervical ganglion neurons in dogs, using extracellular recording techniques. Can J Physiol Pharmacol 63, 704–716.
- Armour JA (1986a). Activity of in situ stellate ganglion neurons of dogs recorded extracellularly. Can J Physiol Pharmacol 64, 101–111.
- Armour JA (1986b). Neuronal activity recorded extracellularly in chronically decentralized in situ canine middle cervical ganglia. Can J Physiol Pharmacol 64, 1038–1046.
- Armour JA (1994). Peripheral autonomic neuronal interactions in cardiac regulation. In Neurocardiology, ed. JA Armour & JL Ardell, pp. 219–244. Oxford University Press, New York.
- Armour JA (1999). Myocardial ischaemia and the cardiac nervous system. Cardiovasc Res 41, 41–54.
- Armour JA (2004). Cardiac neuronal hierarchy in health and disease. Am J Physiol Regul Integr Comp Physiol 287, R262–R271.
- Armour JA (2008). Potential clinical relevance of the ‘little brain’ on the mammalian heart. Exp Physiol 93, 165–176.
- Armour JA (2010). Functional anatomy of intrathoracic neurons innervating the atria and ventricles. Heart Rhythm 7, 994–996.
- Armour JA & Ardell JL (1994). Neurocardiology. Oxford University Press, New York.
- Armour JA & Ardell JL (2004). Basic and Clinical Neurocardiology. Oxford University Press, New York.
10.1093/oso/9780195141290.001.0001 Google Scholar
- Armour JA, Collier K, Kember G & Ardell JL (1998). Differential selectivity of cardiac neurons in separate intrathoracic autonomic ganglia. Am J Physiol 274, R939–R949.
- Armour JA, Hageman GR & Randall WC (1972). Arrhythmias induced by local cardiac nerve stimulation. Am J Physiol 223, 1068–1075.
- Armour JA & Hopkins DA (1990a). Activity of canine in situ left atrial ganglion neurons. Am J Physiol 259, H1207–H1215.
- Armour JA & Hopkins DA (1990b). Activity of in vivo canine ventricular neurons. Am J Physiol 258, H326–H336.
- Armour JA, Huang MH, Pelleg A & Sylven C (1994). Responsiveness of in situ canine nodose ganglion afferent neurones to epicardial mechanical or chemical stimuli. Cardiovasc Res 28, 1218–1225.
- Armour JA & Kember G (2004). Cardiac sensory neurons. In Basic and Clinical Neurocardiology, ed. JA Armour & JL Ardell, pp. 79–117. Oxford University Press, New York.
10.1093/oso/9780195141290.003.0003 Google Scholar
- Armour JA, Linderoth B, Arora RC, DeJongste MJ, Ardell JL, Kingma JG Jr, Hill M & Foreman RD (2002). Long-term modulation of the intrinsic cardiac nervous system by spinal cord neurons in normal and ischaemic hearts. Auton Neurosci 95, 71–79.
- Armour JA, Richer LP, Page P, Vinet A, Kus T, Vermeulen M, Nadeau R & Cardinal R (2005). Origin and pharmacological response of atrial tachyarrhythmias induced by activation of mediastinal nerves in canines. Auton Neurosci 118, 68–78.
- Arora RC & Armour JA (2003). Adenosine A1 receptor activation reduces myocardial reperfusion effects on intrinsic cardiac nervous system. Am J Physiol Regul Integr Comp Physiol 284, R1314–R1321.
- Arora RC, Cardinal R, Smith FM, Ardell JL, Dell'Italia LJ & Armour JA (2003a). Intrinsic cardiac nervous system in tachycardia induced heart failure. Am J Physiol Regul Integr Comp Physiol 285, R1212–R1223.
- Arora RC, Waldmann M, Hopkins DA & Armour JA (2003b). Porcine intrinsic cardiac ganglia. Anat Rec A Discov Mol Cell Evol Biol 271, 249–258.
- Bailey TW, Hermes SM, Andresen MC & Aicher SA (2006). Cranial visceral afferent pathways through the nucleus of the solitary tract to caudal ventrolateral medulla or paraventricular hypothalamus: target-specific synaptic reliability and convergence patterns. J Neurosci 26, 11893–11902.
- Bakris GL, Townsend RR, Flack JM, Brar S, Cohen SA, D'Agostino R, Kandzari DE, Katzen BT, Leon MB, Mauri L, Negoita M, O'Neill WW, Oparil S, Rocha-Singh K & Bhatt DL; SYMPLICITY HTN-3 Investigators (2015). 12-month blood pressure results of catheter-based renal artery denervation for resistant hypertension: the SYMPLICITY HTN-3 trial. J Am Coll Cardiol 65, 1314–1321.
- Balligand JL, Kelly RA, Marsden PA, Smith TW & Michel T (1993). Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci USA 90, 347–351.
- Barbier J, Rannou-Bekono F, Marchais J, Berthon PM, Delamarche P & Carre F (2004). Effect of training on beta1 beta2 beta3 adrenergic and M2 muscarinic receptors in rat heart. Med Sci Sports Exerc 36, 949–954.
- Basnayake SD, Hyam JA, Pereira EA, Schweder PM, Brittain JS, Aziz TZ, Green AL & Paterson DJ (2011). Identifying cardiovascular neurocircuitry involved in the exercise pressor reflex in humans using functional neurosurgery. J Appl Physiol (1985) 110, 881–891.
- Beaumont E, Salavatian S, Southerland EM, Vinet A, Jacquemet V, Armour JA & Ardell JL (2013). Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function. J Physiol 591, 4515–4533.
- Beaumont E, Southerland EM, Hardwick JC, Wright GL, Ryan S, Li Y, KenKnight BH, Armour JA & Ardell JL (2015). Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction. Am J Physiol Heart Circ Physiol 309, H1198–H1206.
- Belardinelli R, Georgiou D, Cianci G & Purcaro A (2012). 10-year exercise training in chronic heart failure: a randomized controlled trial. J Am Coll Cardiol 60, 1521–1528.
- Belevych AE, Terentyev D, Terentyeva R, Ho HT, Gyorke I, Bonilla IM, Carnes CA, Billman GE & Györke S (2012). Shortened Ca2+ signaling refractoriness underlies cellular arrhythmogenesis in a postinfarction model of sudden cardiac death. Circ Res 110, 569–577.
- Bendall JK, Damy T, Ratajczak P, Loyer X, Monceau V, Marty I, Milliez P, Robidel E, Marotte F, Samuel JL & Heymes C (2004). Role of myocardial neuronal nitric oxide synthase-derived nitric oxide in β-adrenergic hyporesponsiveness after myocardial infarction-induced heart failure in rat. Circulation 110, 2368–2375.
- Bhatt DL, Kandzari DE, O'Neill WW, D'Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, Cohen SA, Oparil S, Rocha-Singh K, Townsend RR & Bakris GL; SYMPLICITY HTN-3 Investigators (2014). A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370, 1393–1401.
- Bibevski S & Dunlap ME (1999). Ganglionic mechanisms contribute to diminished vagal control in heart failure. Circulation 99, 2958–2963.
- Bibevski S & Dunlap ME (2004). Prevention of diminished parasympathetic control of the heart in experimental heart failure. Am J Physiol Heart Circ Physiol 287, H1780–H1785.
- Bibevski S & Dunlap ME (2011). Evidence for impaired vagus nerve activity in heart failure. Heart Fail Rev 16, 129–135.
- Billman GE (2006). A comprehensive review and analysis of 25 years of data from an in vivo canine model of sudden cardiac death: implications for future anti-arrhythmic drug development. Pharmacol Ther 111, 808–835.
- Billman GE (2009). Cardiac autonomic neural remodeling and susceptibility to sudden cardiac death: effect of endurance exercise training. Am J Physiol Heart Circ Physiol 297, H1171–H1193.
- Billman GE & Kukielka M (2006). Effects of endurance exercise training on heart rate variability and susceptibility to sudden cardiac death: protection is not due to enhanced cardiac vagal regulation. J Appl Physiol (1985) 100, 896–906.
- Billman GE & Kukielka M (2007). Effect of endurance exercise training on heart rate onset and heart rate recovery responses to submaximal exercise in animals susceptible to ventricular fibrillation. J Appl Physiol (1985) 102, 231–240.
- Billman GE, Kukielka M, Kelley R, Moustafa-Bayoumi M & Altschuld RA (2006). Endurance exercise training attenuates cardiac β2-adrenoceptor responsiveness and prevents ventricular fibrillation in animals susceptible to sudden death. Am J Physiol Heart Circ Physiol 290, H2590–H2599.
- Billman GE, Schwartz PJ & Stone HL (1982). Baroreceptor reflex control of heart rate: a predictor of sudden cardiac death. Circulation 66, 874–880.
- Billman GE, Schwartz PJ & Stone HL (1984). The effects of daily exercise on susceptibility to sudden cardiac death. Circulation 69, 1182–1189.
- Bisognano JD, Bakris G, Nadim MK, Sanchez L, Kroon AA, Schafer J, de Leeuw PW & Sica DA (2011a). Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled rheos pivotal trial. J Am Coll Cardiol 58, 765–773.
- Bisognano JD, Kaufman CL, Bach DS, Lovett EG & de Leeuw P; DEBuT-HT and Rheos Feasibility Trial Investigators (2011b). Improved cardiac structure and function with chronic treatment using an implantable device in resistant hypertension: results from European and United States trials of the Rheos system. J Am Coll Cardiol 57, 1787–1788.
- Blankestijn PJ, Alings M, Voskuil M & Grobbee DE (2015). The complexity after simplicity: how to proceed with renal denervation in hypertension? Eur J Prev Cardiol 22, 412–414.
- Booth LC, May CN & Yao ST (2015). The role of the renal afferent and efferent nerve fibers in heart failure. Front Physiol 6, 270.
- Borlaug BA (2014). The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 11, 507–515.
- Borlaug BA, Melenovsky V, Russell SD, Kessler K, Pacak K, Becker LC & Kass DA (2006). Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation 114, 2138–2147.
- Bourke T, Vaseghi M, Michowitz Y, Sankhla V, Shah M, Swapna N, Boyle NG, Mahajan A, Narasimhan C, Lokhandwala Y & Shivkumar K (2010). Neuraxial modulation for refractory ventricular arrhythmias: value of thoracic epidural anesthesia and surgical left cardiac sympathetic denervation. Circulation 121, 2255–2262.
- Brack KE, Patel VH, Coote JH & Ng GA (2007). Nitric oxide mediates the vagal protective effect on ventricular fibrillation via effects on action potential duration restitution in the rabbit heart. J Physiol 583, 695–704.
- Brack KE, Winter J & Ng GA (2013). Mechanisms underlying the autonomic modulation of ventricular fibrillation initiation – tentative prophylactic properties of vagus nerve stimulation on malignant arrhythmias in heart failure. Heart Fail Rev 18, 389–408.
- Bradfield JS, Vaseghi M & Shivkumar K (2014). Renal denervation for refractory ventricular arrhythmias. Trends Cardiovasc Med 24, 206–213.
- Brandle M, Wang W & Zucker IH (1994). Ventricular mechanoreflex and chemoreflex alterations in chronic heart failure. Circ Res 74, 262–270.
- Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Bohm M & Hoppe UC (2012). Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol 59, 901–909.
- Braunwald NS, Epstein SE & Braunwald E (1970). Carotid sinus nerve stimulation for the treatment of intractable angina pectoris: surgical technic. Ann Surg 172, 870–876.
- Brown AM (1979). Cardiac reflexes. In Handbook of Physiology, The Cardiovascular System, ed. RM Berne, N Sperelakis & SR Geiger, pp. 677–689. American Physiological Society, Williams and Wilkins, Bethesda.
- Browning KN & Travagli RA (2011). Plasticity of vagal brainstem circuits in the control of gastrointestinal function. Auton Neurosci 161, 6–13.
- Buckley U, Shivkumar K & Ardell JL (2015). Autonomic regulation therapy in heart failure. Curr Heart Fail Rep 12, 284–293.
- Buckley U, Yamakawa K, Takamiya T, Armour JA, Shivkumar K & Ardell JL (2016). Targeted stellate decentralization: implications for sympathetic control of ventricular electrophysiology. Heart Rhythm 13, 282–288.
- Butler CK, Smith FM, Cardinal R, Murphy DA, Hopkins DA & Armour JA (1990a). Cardiac responses to electrical stimulation of discrete loci in canine atrial and ventricular ganglionated plexi. Am J Physiol 259, H1365–H1373.
- Butler CK, Smith FM, Nicholson J & Armour JA (1990b). Cardiac effects induced by chemically activated neurons in canine intrathoracic ganglia. Am J Physiol 259, H1108–H1117.
- Calaresu FR & Ciriello J (1981). Renal afferent nerves affect discharge rate of medullary and hypothalamic single units in the cat. J Auton Nerv Syst 3, 311–320.
- Cao JM, Chen LS, KenKnight BH, Ohara T, Lee MH, Tsai J, Lai WW, Karagueuzian HS, Wolf PL, Fishbein MC & Chen PS (2000). Nerve sprouting and sudden cardiac death. Circ Res 86, 816–821.
- Cappato R, Calkins H, Chen SA, Davies W, Iesaka Y, Kalman J, Kim YH, Klein G, Natale A, Packer D, Skanes A, Ambrogi F & Biganzoli E (2010). Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circ Arrhythm Electrophysiol 3, 32–38.
- Cardinal R, Ardell JL, Linderoth B, Vermeulen M, Foreman RD & Armour JA (2004). Spinal cord activation differentially modulates ischaemic electrical responses to different stressors in canine ventricles. Auton Neurosci 111, 37–47.
- Cardinal R, Pagé P, Vermeulen M, Ardell JL & Armour JA (2009). Spatially divergent cardiac responses to nicotinic stimulation of ganglionated plexus neurons in the canine heart. Auton Neurosci 145, 55–62.
- Cardinal R, Pagé P, Vermeulen M, Bouchard C, Ardell JL, Foreman RD & Armour JA (2006). Spinal cord stimulation suppresses bradycardias and atrial tachyarrhythmias induced by mediastinal nerve stimulation in dogs. Am J Physiol Regul Integr Comp Physiol 291, R1369–R1375.
- Chapleau MW, Hajduczok G, Sharma RV, Wachtel RE, Cunningham JT, Sullivan MJ & Abboud FM (1995). Mechanisms of baroreceptor activation. Clin Exp Hypertens 17, 1–13.
- Chapleau MW, Li Z, Meyrelles SS, Ma X & Abboud FM (2001). Mechanisms determining sensitivity of baroreceptor afferents in health and disease. Ann NY Acad Sci 940, 1–19.
- Chen PS, Chen LS, Cao JM, Sharifi B, Karagueuzian HS & Fishbein MC (2001). Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res 50, 409–416.
- Chen PS, Chen LS, Fishbein MC, Lin SF & Nattel S (2014). Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res 114, 1500–1515.
- Chen WW, Xiong XQ, Chen Q, Li YH, Kang YM & Zhu GQ (2015). Cardiac sympathetic afferent reflex and its implications for sympathetic activation in chronic heart failure and hypertension. Acta Physiol (Oxf) 213, 778–794.
- Chinda K, Tsai WC, Chan YH, Lin AY, Patel J, Zhao Y, Tan AY, Shen MJ, Lin H, Shen C, Chattipakorn N, Rubart-von der Lohe M, Chen LS, Fishbein MC, Lin SF, Chen Z & Chen PS (2016). Intermittent left cervical vagal nerve stimulation damages the stellate ganglia and reduces the ventricular rate during sustained atrial fibrillation in ambulatory dogs. Heart Rhythm 13, 771–780.
- Chung K & Deisseroth K (2013). CLARITY for mapping the nervous system. Nat Methods 10, 508–513.
- CIBIS-II (1999). The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 353, 9–13.
- Clayton SC, Haack KK & Zucker IH (2011). Renal denervation modulates angiotensin receptor expression in the renal cortex of rabbits with chronic heart failure. Am J Physiol Renal Physiol 300, F31–F39.
- Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB & Rector T (1984). Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311, 819–823.
- Cole CR, Blackstone EH, Pashkow FJ, Snader CE & Lauer MS (1999). Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med 341, 1351–1357.
- Conde SV, Sacramento JF, Guarino MP, Gonzalez C, Obeso A, Diogo LN, Monteiro EC & Ribeiro MJ (2014). Carotid body, insulin, and metabolic diseases: unraveling the links. Front Physiol 5, 418.
- Coote JH (2013). Myths and realities of the cardiac vagus. J Physiol 591, 4073–4085.
- Coutsos M, Sala-Mercado JA, Ichinose M, Li Z, Dawe EJ & O'Leary DS (2010). Muscle metaboreflex-induced coronary vasoconstriction functionally limits increases in ventricular contractility. J Appl Physiol (1985) 109, 271–278.
- Coutsos M, Sala-Mercado JA, Ichinose M, Li Z, Dawe EJ & O'Leary DS (2013). Muscle metaboreflex-induced coronary vasoconstriction limits ventricular contractility during dynamic exercise in heart failure. Am J Physiol Heart Circ Physiol 304, H1029–H1037.
- Crisafulli A, Salis E, Tocco F, Melis F, Milia R, Pittau G, Caria MA, Solinas R, Meloni L, Pagliaro P & Concu A (2007). Impaired central hemodynamic response and exaggerated vasoconstriction during muscle metaboreflex activation in heart failure patients. Am J Physiol Heart Circ Physiol 292, H2988–H2996.
- Crisafulli A, Scott AC, Wensel R, Davos CH, Francis DP, Pagliaro P, Coats AJ, Concu A & Piepoli MF (2003). Muscle metaboreflex-induced increases in stroke volume. Med Sci Sports Exerc 35, 221–228; Discussion 229.
- Crow MT, Mani K, Nam YJ & Kitsis RN (2004). The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95, 957–970.
- Dai Z, Yu S, Zhao Q, Meng Y, He H, Tang Y, Wang X, Xiao J, Wang X & Huang C (2014). Renal sympathetic denervation suppresses ventricular substrate remodelling in a canine high-rate pacing model. Eurointervention 10, 392–399.
- Dampney RA, Coleman MJ, Fontes MA, Hirooka Y, Horiuchi J, Li YW, Polson JW, Potts PD & Tagawa T (2002). Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol 29, 261–268.
- Dampney RA, Horiuchi J, Killinger S, Sheriff MJ, Tan PS & McDowall LM (2005). Long-term regulation of arterial blood pressure by hypothalamic nuclei: some critical questions. Clin Exp Pharmacol Physiol 32, 419–425.
- Danson EJ, Mankia KS, Golding S, Dawson T, Everatt L, Cai S, Channon KM & Paterson DJ (2004). Impaired regulation of neuronal nitric oxide synthase and heart rate during exercise in mice lacking one nNOS allele. J Physiol 558, 963–974.
- Danson EJ & Paterson DJ (2003). Enhanced neuronal nitric oxide synthase expression is central to cardiac vagal phenotype in exercise-trained mice. J Physiol 546, 225–232.
- De Ferrari GM (2014). Vagal stimulation in heart failure. J Cardiovasc Transl Res 7, 310–320.
- De Ferrari GM, Crijns HJ, Borggrefe M, Milasinovic G, Smid J, Zabel M, Gavazzi A, Sanzo A, Dennert R, Kuschyk J, Raspopovic S, Klein H, Swedberg K & Schwartz PJ; CardioFit Multicenter Trial Investigators (2011). Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J 32, 847–855.
- De Ferrari GM, Tuinenburg AE, Ruble S, Brugada J, Klein H, Butter C, Wright DJ, Schubert B, Solomon S, Meyer S, Stein K, Ramuzat A & Zannad F (2014). Rationale and study design of the NEuroCardiac TherApy foR Heart Failure Study: NECTAR-HF. Eur J Heart Fail 16, 692–699.
- De Ferrari GM, Vanoli E, Stramba-Badiale M, Hull SS Jr, Foreman RD & Schwartz PJ (1991). Vagal reflexes and survival during acute myocardial ischemia in conscious dogs with healed myocardial infarction. Am J Physiol 261, H63–H69.
- Del Rio R, Marcus NJ & Schultz HD (2013). Carotid chemoreceptor ablation improves survival in heart failure: rescuing autonomic control of cardiorespiratory function. J Am Coll Cardiol 62, 2422–2430.
- Dell'Italia LJ (2011). Translational success stories: angiotensin receptor 1 antagonists in heart failure. Circ Res 109, 437–452.
- Dempsey JA, Blain GM & Amann M (2014). Are type III–IV muscle afferents required for a normal steady-state exercise hyperpnoea in humans? J Physiol 592, 463–474.
- Dempsey JA & Smith CA (2014). Pathophysiology of human ventilatory control. Eur Respir J 44, 495–512.
- Dergacheva O, Weigand LA, Dyavanapalli J, Mares J, Wang X & Mendelowitz D (2014). Function and modulation of premotor brainstem parasympathetic cardiac neurons that control heart rate by hypoxia-, sleep-, and sleep-related diseases including obstructive sleep apnea. Prog Brain Res 212, 39–58.
- Ding X, Ardell JL, Hua F, McAuley RJ, Sutherly K, Daniel JJ & Williams CA (2008a). Modulation of cardiac ischemia-sensitive afferent neuron signaling by preemptive C2 spinal cord stimulation: effect on substance P release from rat spinal cord. Am J Physiol Regul Integr Comp Physiol 294, R93–R101.
- Ding X, Hua F, Sutherly K, Ardell JL & Williams CA (2008b). C2 spinal cord stimulation induces dynorphin release from rat T4 spinal cord: potential modulation of myocardial ischemia-sensitive neurons. Am J Physiol Regul Integr Comp Physiol 295, R1519–R1528.
- Dobaczewski M, Gonzalez-Quesada C & Frangogiannis NG (2010). The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48, 504–511.
- Donoghue S, Fox RE, Kidd C & Koley BN (1981). The distribution in the cat brain stem of neurones activated by vagal nonmyelinated fibres from the heart and lungs. Q J Exp Physiol 66, 391–404.
- Donovan MK, Wyss JM & Winternitz SR (1983). Localization of renal sensory neurons using the fluorescent dye technique. Brain Res 259, 119–122.
- Edwards FR, Hirst GD, Klemm MF & Steele PA (1995). Different types of ganglion cell in the cardiac plexus of guinea-pigs. J Physiol 486, 453–471.
- Epstein M & de Marchena E (2015). Is the failure of SYMPLICITY HTN-3 trial to meet its efficacy endpoint the ‘end of the road’ for renal denervation? J Am Soc Hypertens 9, 140–149.
- Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE & Bohm M (2010). Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376, 1903–1909.
- Ewert TJ, Gritman KR, Bader M & Habecker BA (2008). Post-infarct cardiac sympathetic hyperactivity regulates galanin expression. Neurosci Lett 436, 163–166.
- Fan W, Schild JH & Andresen MC (1999). Graded and dynamic reflex summation of myelinated and unmyelinated rat aortic baroreceptors. Am J Physiol 277, R748–R756.
- Feng Q, Song W, Lu X, Hamilton JA, Lei M, Peng T & Yee SP (2002). Development of heart failure and congenital septal defects in mice lacking endothelial nitric oxide synthase. Circulation 106, 873–879.
- Fletcher EC (2001). Invited review: Physiological consequences of intermittent hypoxia: systemic blood pressure. J Appl Physiol (1985) 90, 1600–1605.
- Floras JS & Ponikowski P (2015). The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur Heart J 36, 1974–1982.
- Florea VG & Cohn JN (2014). The autonomic nervous system and heart failure. Circ Res 114, 1815–1826.
- Foreman RD (1991). The neurological basis for cardiac pain. In Reflex Control of the Circulation, ed. IH Zucker & JP Gilmore, pp. 311–316. CRC Press, Inc., Boca Raton, Florida.
- Foreman RD (1999). Mechanisms of cardiac pain. Annu Rev Physiol 61, 143–167.
- Foreman RD & Linderoth B (2012). Neural mechanisms of spinal cord stimulation. Int Rev Neurobiol 107, 87–119.
- Foreman RD, DeJongste MJL & Linderoth B (2004). Integrative control of cardiac function by cervical and thoracic spinal neurons. In Basic and Clinical Neurocardiology, ed. JA Armour & JL Ardell, pp. 153–186. Oxford University Press, New York.
10.1093/oso/9780195141290.003.0005 Google Scholar
- Foreman RD, Linderoth B, Ardell JL, Barron KW, Chandler MJ, Hull SS Jr, TerHorst GJ, DeJongste MJ & Armour JA (2000). Modulation of intrinsic cardiac neurons by spinal cord stimulation: implications for its therapeutic use in angina pectoris. Cardiovasc Res 47, 367–375.
- Francisco LL, Hoversten LG & DiBona GF (1980). Renal nerves in the compensatory adaptation to ureteral occlusion. Am J Physiol 238, F229–F234.
- Franco-Cereceda A, Kallner G & Lundberg JM (1993). Capsazepine-sensitive release of calcitonin gene-related peptide from C-fibre afferents in the guinea-pig heart by low pH and lactic acid. Eur J Pharmacol 238, 311–316.
- Fu LW, Guo ZL & Longhurst JC (2008). Undiscovered role of endogenous thromboxane A2 in activation of cardiac sympathetic afferents during ischaemia. J Physiol 586, 3287–3300.
- Fu LW & Longhurst JC (2009). Regulation of cardiac afferent excitability in ischemia. Handb Exp Pharmacol, 185–225.
10.1007/978-3-540-79090-7_6 Google Scholar
- Fudim M, Groom KL, Laffer CL, Netterville JL, Robertson D & Elijovich F (2015). Effects of carotid body tumor resection on the blood pressure of essential hypertensive patients. J Am Soc Hypertens 9, 435–442.
- Fukuda K, Kanazawa H, Aizawa Y, Ardell JL & Shivkumar K (2015). Cardiac innervation and sudden cardiac death. Circ Res 116, 2005–2019.
- Funakoshi K, Hosokawa K, Kishi T, Ide T & Sunagawa K (2014). Striking volume intolerance is induced by mimicking arterial baroreflex failure in normal left ventricular function. J Card Fail 20, 53–59.
- Furukawa Y, Hoyano Y & Chiba S (1996). Parasympathetic inhibition of sympathetic effects on sinus rate in anesthetized dogs. Am J Physiol 271, H44–H50.
- Gagliardi M, Randall WC, Bieger D, Wurster RD, Hopkins DA & Armour JA (1988). Activity of in vivo canine cardiac plexus neurons. Am J Physiol 255, H789–H800.
- Gao L, Pan YX, Wang WZ, Li YL, Schultz HD, Zucker IH & Wang W (2007). Cardiac sympathetic afferent stimulation augments the arterial chemoreceptor reflex in anesthetized rats. J Appl Physiol (1985) 102, 37–43.
- Gao L, Wang WZ, Wang W & Zucker IH (2008). Imbalance of angiotensin type 1 receptor and angiotensin II type 2 receptor in the rostral ventrolateral medulla: potential mechanism for sympathetic overactivity in heart failure. Hypertension 52, 708–714.
- Gardner RT, Wang L, Lang BT, Cregg JM, Dunbar CL, Woodward WR, Silver J, Ripplinger CM & Habecker BA (2015). Targeting protein tyrosine phosphatase σ after myocardial infarction restores cardiac sympathetic innervation and prevents arrhythmias. Nat Commun 6, 6235.
- Gelband H, Rosen MR, Myerburg RJ, Bush HL, Bassett AL & Hoffman BF (1977). Restorative effect of epinephrine on the electrophysiologic properties of depressed human atrial tissue. J Electrocardiol 10, 313–320.
- Gibbons DD, Southerland EM, Hoover DB, Beaumont E, Armour JA & Ardell JL (2012). Neuromodulation targets intrinsic cardiac neurons to attenuate neuronally mediated atrial arrhythmias. Am J Physiol Regul Integr Comp Physiol 302, R357–R364.
- Glukhov AV, Fedorov VV, Kalish PW, Ravikumar VK, Lou Q, Janks D, Schuessler RB, Moazami N & Efimov IR (2012). Conduction remodeling in human end-stage nonischemic left ventricular cardiomyopathy. Circulation 125, 1835–1847.
- Glukhov AV, Fedorov VV, Lou Q, Ravikumar VK, Kalish PW, Schuessler RB, Moazami N & Efimov IR (2010). Transmural dispersion of repolarization in failing and nonfailing human ventricle. Circ Res 106, 981–991.
- Green AL, Wang S, Owen SL, Xie K, Liu X, Paterson DJ, Stein JF, Bain PG & Aziz TZ (2005). Deep brain stimulation can regulate arterial blood pressure in awake humans. Neuroreport 16, 1741–1745.
- Grundy D (2004). What activates visceral afferents? Gut 53 (Suppl. 2), ii5–8.
- Guo Z, Niu YL, Zhang JW & Yao TP (2007). Coronary artery occlusion alters expression of substance P and its mRNA in spinal dorsal horn in rats. Neuroscience 145, 669–675.
- Guo Z, Zhao Q, Deng H, Tang Y, Wang X, Dai Z, Xiao J, Wan P, Wang X, Huang H & Huang C (2014). Renal sympathetic denervation attenuates the ventricular substrate and electrophysiological remodeling in dogs with pacing-induced heart failure. Int J Cardiol 175, 185–186.
- Guyenet PG (2006). The sympathetic control of blood pressure. Nat Rev Neurosci 7, 335–346.
- Guyenet PG (2014). Regulation of breathing and autonomic outflows by chemoreceptors. Compr Physiol 4, 1511–1562.
- Guyenet PG, Stornetta RL, Bochorishvili G, Depuy SD, Burke PG & Abbott SB (2013). C1 neurons: the body's EMTs. Am J Physiol Regul Integr Comp Physiol 305, R187–R204.
- Habecker BA, Anderson ME, Birren SJ, Fukada K, Herring N, Hoover DB, Kanazawa H, Paterson DJ & Ripplinger CM (2016). Molecular and cellular neurocardiology: development, cellular and molecular adaptations to heart disease. J Physiol 594, 3853–3875.
- Hammond HK, White FC, Brunton LL & Longhurst JC (1987). Association of decreased myocardial β-receptors and chronotropic response to isoproterenol and exercise in pigs following chronic dynamic exercise. Circ Res 60, 720–726.
- Hammond RL, Augustyniak RA, Rossi NF, Churchill PC, Lapanowski K & O'Leary DS (2000). Heart failure alters the strength and mechanisms of the muscle metaboreflex. Am J Physiol Heart Circ Physiol 278, H818–H828.
- Han S, Kobayashi K, Joung B, Piccirillo G, Maruyama M, Vinters HV, March K, Lin SF, Shen C, Fishbein MC, Chen PS & Chen LS (2012). Electroanatomic remodeling of the left stellate ganglion after myocardial infarction. J Am Coll Cardiol 59, 954–961.
- Han X, Shimoni Y & Giles WR (1994). An obligatory role for nitric oxide in autonomic control of mammalian heart rate. J Physiol 476, 309–314.
- Hankes GH, Ardell JL, Tallaj J, Wei CC, Aban I, Holland M, Rynders P, Dillon R, Cardinal R, Hoover DB, Armour JA, Husain A & Dell'Italia LJ (2006). β1-Adrenoceptor blockade mitigates excessive norepinephrine release into cardiac interstitium in mitral regurgitation in dog. Am J Physiol Heart Circ Physiol 291, H147–H151.
- Hardwick JC, Baran CN, Southerland EM & Ardell JL (2009). Remodeling of the guinea pig intrinsic cardiac plexus with chronic pressure overload. Am J Physiol Regul Integr Comp Physiol 297, R859–R866.
- Hardwick JC, Ryan SE, Beaumont E, Ardell JL & Southerland EM (2014). Dynamic remodeling of the guinea pig intrinsic cardiac plexus induced by chronic myocardial infarction. Auton Neurosci 181, 4–12.
- Hardwick JC, Ryan SE, Powers EN, Southerland EM & Ardell JL (2015). Angiotensin receptors alter myocardial infarction-induced remodeling of the guinea pig cardiac plexus. Am J Physiol Regul Integr Comp Physiol 309, R179–R188.
- Hardwick JC, Southerland EM & Ardell JL (2008). Chronic myocardial infarction induces phenotypic and functional remodeling in the guinea pig cardiac plexus. Am J Physiol Regul Integr Comp Physiol 295, R1926–1933.
- Heaton DA, Li D, Almond SC, Dawson TA, Wang L, Channon KM & Paterson DJ (2007). Gene transfer of neuronal nitric oxide synthase into intracardiac ganglia reverses vagal impairment in hypertensive rats. Hypertension 49, 380–388.
- Hering D, Zdrojewski Z, Krol E, Kara T, Kucharska W, Somers VK, Rutkowski B & Narkiewicz K (2007). Tonic chemoreflex activation contributes to the elevated muscle sympathetic nerve activity in patients with chronic renal failure. J Hypertens 25, 157–161.
- Herring N (2015). Autonomic control of the heart: going beyond the classical neurotransmitters. Exp Physiol 100, 354–358.
- Herring N, Danson EJ & Paterson DJ (2002). Cholinergic control of heart rate by nitric oxide is site specific. News Physiol Sci 17, 202–206.
- Herring N & Paterson DJ (2001). Nitric oxide–cGMP pathway facilitates acetylcholine release and bradycardia during vagal nerve stimulation in the guinea-pig in vitro. J Physiol 535, 507–518.
- Herring N & Paterson DJ (2009). Neuromodulators of peripheral cardiac sympatho-vagal balance. Exp Physiol 94, 46–53.
- Himura Y, Felten SY, Kashiki M, Lewandowski TJ, Delehanty JM & Liang CS (1993). Cardiac noradrenergic nerve terminal abnormalities in dogs with experimental congestive heart failure. Circulation 88, 1299–1309.
- Holycross BJ, Kukielka M, Nishijima Y, Altschuld RA, Carnes CA & Billman GE (2007). Exercise training normalizes β-adrenoceptor expression in dogs susceptible to ventricular fibrillation. Am J Physiol Heart Circ Physiol 293, H2702–H2709.
- Hoover DB, Shepherd AV, Southerland EM, Armour JA & Ardell JL (2008). Neurochemical diversity of afferent neurons that transduce sensory signals from dog ventricular myocardium. Auton Neurosci 141, 38–45.
- Hopkins DA & Armour JA (1982). Medullary cells of origin of physiologically identified cardiac nerves in the dog. Brain Res Bull 8, 359–365.
- Hosokawa K, Funakoshi K, Tanaka A, Sakamoto T, Onitsuka K, Sakamoto K, Tobushi T, Fujino T, Saku K, Murayama Y, Ide T & Sunagawa K (2011). Artificial baroreflex system restores volume tolerance in the absence of native baroreflex. Conf Proc IEEE Eng Med Biol Soc 2011, 697–699.
- Hosokawa K, Ide T, Tobushi T, Sakamoto K, Onitsuka K, Sakamoto T, Fujino T, Saku K & Sunagawa K (2012). Bionic baroreceptor corrects postural hypotension in rats with impaired baroreceptor. Circulation 126, 1278–1285.
- Houser SR, Margulies KB, Murphy AM, Spinale FG, Francis GS, Prabhu SD, Rockman HA, Kass DA, Molkentin JD, Sussman MA, Koch WJ; American Heart Association Council on Basic Cardiovascular Sciences, Council on Clinical Cardiology, and Council on Functional Genomics and Translational Biology (2012). Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res 111, 131–150.
- Hua F, Ricketts BA, Reifsteck A, Ardell JL & Williams CA (2004). Myocardial ischemia induces the release of substance P from cardiac afferent neurons in rat thoracic spinal cord. Am J Physiol Heart Circ Physiol 286, H1654–H1664.
- Huang HS, Pan HL, Stahl GL & Longhurst JC (1995). Ischemia- and reperfusion-sensitive cardiac sympathetic afferents: influence of H2O2 and hydroxyl radicals. Am J Physiol 269, H888–H901.
- Huang J, Qian J, Yao W, Wang N, Zhang Z, Cao C, Song B & Zhang Z (2015). Vagus nerve stimulation reverses ventricular electrophysiological changes induced by hypersympathetic nerve activity. Exp Physiol 100, 239–248.
- Huang MH, Ardell JL, Hanna BD, Wolf SG & Armour JA (1993). Effects of transient coronary artery occlusion on canine intrinsic cardiac neuronal activity. Integr Physiol Behav Sci 28, 5–21.
- Inoue H, Skale BT & Zipes DP (1988). Effects of ischemia on cardiac afferent sympathetic and vagal reflexes in dog. Am J Physiol 255, H26–H35.
- ISIS-1 (1986). Randomised trial of intravenous atenolol among 16 027 cases of suspected acute myocardial infarction: ISIS-1. First International Study of Infarct Survival Collaborative Group. Lancet 2, 57–66.
- Ito M & Zipes DP (1994). Efferent sympathetic and vagal innervation of the canine right ventricle. Circulation 90, 1459–1468.
- Jänig W (2006). The Integrative Action of the Autonomic Nervous System: Neurobiology of Homeostasis. Cambridge University Press, New York.
- Jänig W (2014a). Autonomic nervous system and inflammation. Auton Neurosci 182, 1–3.
- Jänig W (2014b). Sympathetic nervous system and inflammation: a conceptual view. Auton Neurosci 182, 4–14.
- Jin YH, Bailey TW, Li BY, Schild JH & Andresen MC (2004). Purinergic and vanilloid receptor activation releases glutamate from separate cranial afferent terminals in nucleus tractus solitarius. J Neurosci 24, 4709–4717.
- Kalla M, Chotalia M, Coughlan C, Hao G, Crabtree MJ, Tomek J, Bub G, Paterson DJ & Herring N (2016). Protection against ventricular fibrillation via cholinergic receptor stimulation and the generation of nitric oxide. J Physiol 594, 3981–3992.
- Kandzari DE, Bhatt DL, Sobotka PA, O'Neill WW, Esler M, Flack JM, Katzen BT, Leon MB, Massaro JM, Negoita M, Oparil S, Rocha-Singh K, Straley C, Townsend RR & Bakris G (2012). Catheter-based renal denervation for resistant hypertension: rationale and design of the SYMPLICITY HTN-3 Trial. Clin Cardiol 35, 528–535.
- Kara T, Narkiewicz K & Somers VK (2003). Chemoreflexes – physiology and clinical implications. Acta Physiol Scand 177, 377–384.
- Katchanov G, Xu J, Hurt CM & Pelleg A (1996). Electrophysiological-anatomic correlates of ATP-triggered vagal reflex in the dog. III. Role of cardiac afferents. Am J Physiol 270, H1785–H1790.
- Kaufman MP & Rybicki KJ (1987). Discharge properties of group III and IV muscle afferents: their responses to mechanical and metabolic stimuli. Circ Res 61, I60–65.
- Kelly RA, Balligand JL & Smith TW (1996). Nitric oxide and cardiac function. Circ Res 79, 363–380.
- Kember G, Ardell JL, Armour JA & Zamir M (2014). Vagal nerve stimulation therapy: what is being stimulated? PLoS One 9, e114498.
- Kember G, Armour JA & Zamir M (2011). Neural control of heart rate: the role of neuronal networking. J Theor Biol 277, 41–47.
- Kember G, Armour JA & Zamir M (2013a). Dynamic neural networking as a basis for plasticity in the control of heart rate. J Theor Biol 317, 39–46.
- Kember G, Armour JA & Zamir M (2013b). Neural control hierarchy of the heart has not evolved to deal with myocardial ischemia. Physiol Genomics 45, 638–644.
- Kember GC, Fenton GA, Armour JA & Kalyaniwalla N (2001). Competition model for aperiodic stochastic resonance in a Fitzhugh-Nagumo model of cardiac sensory neurons. Phys Rev E Stat Nonlin Soft Matter Phys 63, 041911.
- Keteyian SJ, Fleg JL, Brawner CA & Pina IL (2010). Role and benefits of exercise in the management of patients with heart failure. Heart Fail Rev 15, 523–530.
- Keteyian SJ, Leifer ES, Houston-Miller N, Kraus WE, Brawner CA, O'Connor CM, Whellan DJ, Cooper LS, Fleg JL, Kitzman DW, Cohen-Solal A, Blumenthal JA, Rendall DS, Piña IL; HF-ACTION Investigators (2012). Relation between volume of exercise and clinical outcomes in patients with heart failure. J Am Coll Cardiol 60, 1899–1905.
- Kim JK, Sala-Mercado JA, Hammond RL, Rodriguez J, Scislo TJ & O'Leary DS (2005). Attenuated arterial baroreflex buffering of muscle metaboreflex in heart failure. Am J Physiol Heart Circ Physiol 289, H2416–H2423.
- Kingma JG Jr, Linderoth B, Ardell JL, Armour JA, DeJongste MJ & Foreman RD (2001). Neuromodulation therapy does not influence blood flow distribution or left-ventricular dynamics during acute myocardial ischemia. Auton Neurosci 91, 47–54.
- Kirchheim HR (1976). Systemic arterial baroreceptor reflexes. Physiol Rev 56, 100–177.
- Kleiger RE, Miller JP, Bigger JT Jr & Moss AJ (1987). Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59, 256–262.
- Knuepfer MM & Schramm LP (1987). The conduction velocities and spinal projections of single renal afferent fibers in the rat. Brain Res 435, 167–173.
- Koba S, Xing J, Sinoway LI & Li J (2008). Sympathetic nerve responses to muscle contraction and stretch in ischemic heart failure. Am J Physiol Heart Circ Physiol 294, H311–H321.
- Kopp UC, Smith LA & DiBona GF (1985). Renorenal reflexes: neural components of ipsilateral and contralateral renal responses. Am J Physiol 249, F507–F517.
- Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, Abraham WT & Esler M (2009). Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373, 1275–1281.
- Kukielka M, Seals DR & Billman GE (2006). Cardiac vagal modulation of heart rate during prolonged submaximal exercise in animals with healed myocardial infarctions: effects of training. Am J Physiol Heart Circ Physiol 290, H1680–H1685.
- Kumar P & Prabhakar NR (2012). Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol 2, 141–219.
- Kunze DL (1972). Reflex discharge patterns of cardiac vagal efferent fibres. J Physiol 222, 1–15.
- La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A & Schwartz PJ (1998). Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 351, 478–484.
- Latremoliere A & Woolf CJ (2009). Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10, 895–926.
- Lee MG, Huh BK, Choi SS, Lee DK, Lim BG & Lee M (2012). The effect of epidural resiniferatoxin in the neuropathic pain rat model. Pain Physician 15, 287–296.
- Lee S, Sahadevan J, Khrestian CM, Durand DM & Waldo AL (2013). High density mapping of atrial fibrillation during vagal nerve stimulation in the canine heart: restudying the Moe hypothesis. J Cardiovasc Electrophysiol 24, 328–335.
- Lefkowitz RJ (2013). A brief history of G-protein coupled receptors (Nobel Lecture). Angew Chem Int Ed Engl 52, 6366–6378.
- Leiria TL, Glavinovic T, Armour JA, Cardinal R, de Lima GG & Kus T (2011). Longterm effects of cardiac mediastinal nerve cryoablation on neural inducibility of atrial fibrillation in canines. Auton Neurosci 161, 68–74.
- Levy MN (1971). Sympathetic-parasympathetic interactions in the heart. Circ Res 29, 437–445.
- Levy MN & Martin PJ (1979). Neural control of the heart. In Handbook of Physiology, section 2, The Cardiovascular System, vol. I, The Heart, ed. RM Berne, pp. 581–620. The American Physiological Society, Bethesda.
- Levy MN, Ng M, Martin P, Zieske H & Rogoff T (1966). Sympathetic and parasympathetic interactions upon the left ventricle of the dog. Circ Res 19, 5–10.
- Li M, Zheng C, Sato T, Kawada T, Sugimachi M & Sunagawa K (2004). Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 109, 120–124.
- Liang CS (2003). Sympatholysis and cardiac sympathetic nerve function in the treatment of congestive heart failure. J Am Coll Cardiol 42, 549–551.
- Liu JL, Kulakofsky J & Zucker IH (2002). Exercise training enhances baroreflex control of heart rate by a vagal mechanism in rabbits with heart failure. J Appl Physiol (1985) 92, 2403–2408.
- Liu JL, Pliquett RU, Brewer E, Cornish KG, Shen YT & Zucker IH (2001). Chronic endothelin-1 blockade reduces sympathetic nerve activity in rabbits with heart failure. Am J Physiol Regul Integr Comp Physiol 280, R1906–R1913.
- Lopshire JC, Zhou X, Dusa C, Ueyama T, Rosenberger J, Courtney N, Ujhelyi M, Mullen T, Das M & Zipes DP (2009). Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine postinfarction heart failure model. Circulation 120, 286–294.
- Lopshire JC & Zipes DP (2012). Device therapy to modulate the autonomic nervous system to treat heart failure. Curr Cardiol Rep 14, 593–600.
- Lopshire JC & Zipes DP (2014). Spinal cord stimulation for heart failure: preclinical studies to determine optimal stimulation parameters for clinical efficacy. J Cardiovasc Transl Res 7, 321–329.
- Lubbe WF, Podzuweit T & Opie LH (1992). Potential arrhythmogenic role of cyclic adenosine monophosphate (AMP) and cytosolic calcium overload: implications for prophylactic effects of beta-blockers in myocardial infarction and proarrhythmic effects of phosphodiesterase inhibitors. J Am Coll Cardiol 19, 1622–1633.
- Lujan HL, Palani G, Zhang L & DiCarlo SE (2010). Targeted ablation of cardiac sympathetic neurons reduces the susceptibility to ischemia-induced sustained ventricular tachycardia in conscious rats. Am J Physiol Heart Circ Physiol 298, H1330–H1339.
- McAllen RM, Salo LM, Paton JF & Pickering AE (2011). Processing of central and reflex vagal drives by rat cardiac ganglion neurones: an intracellular analysis. J Physiol 589, 5801–5818.
- McAllen RM & Spyer KM (1978). Two types of vagal preganglionic motoneurones projecting to the heart and lungs. J Physiol 282, 353–364.
- McBryde FD, Abdala AP, Hendy EB, Pijacka W, Marvar P, Moraes DJ, Sobotka PA & Paton JF (2013). The carotid body as a putative therapeutic target for the treatment of neurogenic hypertension. Nat Commun 4, 2395.
- MacDonnell SM, Kubo H, Crabbe DL, Renna BF, Reger PO, Mohara J, Smithwick LA, Koch WJ, Houser SR & Libonati JR (2005). Improved myocardial β-adrenergic responsiveness and signaling with exercise training in hypertension. Circulation 111, 3420–3428.
- McGuirt AS, Schmacht DC & Ardell JL (1997). Autonomic interactions for control of atrial rate are maintained after SA nodal parasympathectomy. Am J Physiol 272, H2525–H2533.
- Malliani A & Lombardi F (1982). Consideration of the fundamental mechanisms eliciting cardiac pain. Am Heart J 103, 575–578.
- Malliani A & Montano N (2002). Emerging excitatory role of cardiovascular sympathetic afferents in pathophysiological conditions. Hypertension 39, 63–68.
- Malliani A, Pagani M, Pizzinelli P, Furlan R & Guzzetti S (1983). Cardiovascular reflexes mediated by sympathetic afferent fibers. J Auton Nerv Syst 7, 295–301.
- Mannheimer C, Camici P, Chester MR, Collins A, DeJongste M, Eliasson T, Follath F, Hellemans I, Herlitz J, Luscher T, Pasic M & Thelle D (2002). The problem of chronic refractory angina; report from the ESC Joint Study Group on the Treatment of Refractory Angina. Eur Heart J 23, 355–370.
- Marcus NJ, Del Rio R, Schultz EP, Xia XH & Schultz HD (2014). Carotid body denervation improves autonomic and cardiac function and attenuates disordered breathing in congestive heart failure. J Physiol 592, 391–408.
- Marshall JM (1994). Peripheral chemoreceptors and cardiovascular regulation. Physiol Rev 74, 543–594.
- Massari VJ, Johnson TA & Gatti PJ (1995). Cardiotopic organization of the nucleus ambiguus? An anatomical and physiological analysis of neurons regulating atrioventricular conduction. Brain Res 679, 227–240.
- Mazzeo RS, Podolin DA & Henry V (1995). Effects of age and endurance training on β-adrenergic receptor characteristics in Fischer 344 rats. Mech Ageing Dev 84, 157–169.
- Mendelowitz D (1999). Advances in parasympathetic control of heart rate and cardiac function. News Physiol Sci 14, 155–161.
- Mifflin SW (1996). Convergent carotid sinus nerve and superior laryngeal nerve afferent inputs to neurons in the NTS. Am J Physiol 271, R870–R880.
- Mill JG, Stefanon I, dos Santos L & Baldo MP (2011). Remodeling in the ischemic heart: the stepwise progression for heart failure. Braz J Med Biol Res 44, 890–898.
- Milligan ED & Watkins LR (2009). Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10, 23–36.
- Mollema SA, Liem SS, Suffoletto MS, Bleeker GB, van der Hoeven BL, van de Veire NR, Boersma E, Holman ER, van der Wall EE, Schalij MJ, Gorcsan J 3rd & Bax JJ (2007). Left ventricular dyssynchrony acutely after myocardial infarction predicts left ventricular remodeling. J Am Coll Cardiol 50, 1532–1540.
- Mungrue IN, Gros R, You X, Pirani A, Azad A, Csont T, Schulz R, Butany J, Stewart DJ & Husain M (2002). Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J Clin Invest 109, 735–743.
- Murphy DA, Thompson GW, Ardell JL, McCraty R, Stevenson RS, Sangalang VE, Cardinal R, Wilkinson M, Craig S, Smith FM, Kingma JG & Armour JA (2000). The heart reinnervates after transplantation. Ann Thorac Surg 69, 1769–1781.
- Naccarelli GV, Varker H, Lin J & Schulman KL (2009). Increasing prevalence of atrial fibrillation and flutter in the United States. Am J Cardiol 104, 1534–1539.
- Nadeau R, Cardinal R, Armour JA, Kus T, Richer LP, Vermeulen M, Yin Y & Page P (2007). Cervical vagosympathetic and mediastinal nerves activation effects on atrial arrhythmia formation. Anadolu Kardiyol Derg 7 (Suppl. 1), 34–36.
- Nerdrum T, Baker DG, Coleridge HM & Coleridge JC (1986). Interaction of bradykinin and prostaglandin E1 on cardiac pressor reflex and sympathetic afferents. Am J Physiol 250, R815–R822.
- Ng GA, Brack KE & Coote JH (2001). Effects of direct sympathetic and vagus nerve stimulation on the physiology of the whole heart – a novel model of isolated Langendorff perfused rabbit heart with intact dual autonomic innervation. Exp Physiol 86, 319–329.
- Ng GA, Brack KE, Patel VH & Coote JH (2007). Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart. Cardiovasc Res 73, 750–760.
- Nguyen BL, Li H, Fishbein MC, Lin SF, Gaudio C, Chen PS & Chen LS (2012). Acute myocardial infarction induces bilateral stellate ganglia neural remodeling in rabbits. Cardiovasc Pathol 21, 143–148.
- Niewinski P, Janczak D, Rucinski A, Tubek S, Engelman ZJ, Jazwiec P, Banasiak W, Sobotka PA, Hart EC, Paton JF & Ponikowski P (2014). Dissociation between blood pressure and heart rate response to hypoxia after bilateral carotid body removal in men with systolic heart failure. Exp Physiol 99, 552–561.
- Niijima A (1975). Observation on the localization of mechanoreceptors in the kidney and afferent nerve fibres in the renal nerves in the rabbit. J Physiol 245, 81–90.
- Nisoli E & Carruba MO (2006). Nitric oxide and mitochondrial biogenesis. J Cell Sci 119, 2855–2862.
- Niu YL, Guo Z & Zhou RH (2009). Up-regulation of TNF-α in neurons of dorsal root ganglia and spinal cord during coronary artery occlusion in rats. Cytokine 47, 23–29.
- Nolan J, Batin PD, Andrews R, Lindsay SJ, Brooksby P, Mullen M, Baig W, Flapan AD, Cowley A, Prescott RJ, Neilson JM & Fox KA (1998). Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart). Circulation 98, 1510–1516.
- Norris JE, Foreman RD & Wurster RK (1974). Responses of the canine heart to stimulation of the first five ventral thoracic roots. Am J Physiol 227, 9–12.
- Norris JE, Lippincott D & Wurster RD (1977). Responses of canine endocardium to stimulation of the upper thoracic roots. Am J Physiol 233, H655–H659.
- Nozawa T, Igawa A, Fujii N, Kato B, Yoshida N, Asanoi H & Inoue H (2002). Effects of long-term renal sympathetic denervation on heart failure after myocardial infarction in rats. Heart Vessels 16, 51–56.
- Oliveira AL, Hydling F, Olsson E, Shi T, Edwards RH, Fujiyama F, Kaneko T, Hokfelt T, Cullheim S & Meister B (2003). Cellular localization of three vesicular glutamate transporter mRNAs and proteins in rat spinal cord and dorsal root ganglia. Synapse 50, 117–129.
- Opie LH & Clusin WT (1990). Cellular mechanism for ischemic ventricular arrhythmias. Annu Rev Med 41, 231–238.
- Park HW, Shen MJ, Lin SF, Fishbein MC, Chen LS & Chen PS (2012). Neural mechanisms of atrial fibrillation. Curr Opin Cardiol 27, 24–28.
- Paton JF, Kasparov S & Paterson DJ (2002). Nitric oxide and autonomic control of heart rate: a question of specificity. Trends Neurosci 25, 626–631.
- Paton JF, Ratcliffe L, Hering D, Wolf J, Sobotka PA & Narkiewicz K (2013). Revelations about carotid body function through its pathological role in resistant hypertension. Curr Hypertens Rep 15, 273–280.
- Peters JH, McDougall SJ, Fawley JA & Andresen MC (2011). TRPV1 marks synaptic segregation of multiple convergent afferents at the rat medial solitary tract nucleus. PLoS One 6, e25015.
- Premchand RK, Sharma K, Mittal S, Monteiro R, Dixit S, Libbus I, DiCarlo LA, Ardell JL, Rector TS, Amurthur B, KenKnight BH & Anand IS (2014). Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: Results of the ANTHEM-HF Trial. J Card Fail 20, 808–816.
- Premchand RK, Sharma K, Mittal S, Monteiro R, Dixit S, Libbus I, DiCarlo LA, Ardell JL, Rector TS, Amurthur B, KenKnight BH & Anand IS (2015). Extended follow-up of patients with heart failure receiving autonomic regulation therapy in the ANTHEM-HF Study. J Card Fail DOI: http://dx.doi.org/10.1016/j.cardfail.2015.11.002.
- Rajendran PS, Nakamura K, Ajijola OA, Vaseghi M, Armour JA, Ardell JL & Shivkumar K (2016). Myocardial infarction induces structural and functional remodelling of the intrinsic cardiac nervous system. J Physiol 594, 321–341.
- Randall DC, Brown DR, Li SG, Olmstead ME, Kilgore JM, Sprinkle AG, Randall WC & Ardell JL (1998). Ablation of posterior atrial ganglionated plexus potentiates sympathetic tachycardia to behavioral stress. Am J Physiol 275, R779–R787.
- Randall DC, Brown DR, McGuirt AS, Thompson GW, Armour JA & Ardell JL (2003). Interactions within the intrinsic cardiac nervous system contribute to chronotropic regulation. Am J Physiol Regul Integr Comp Physiol 285, R1066–R1075.
- Randall WC (1994). Efferent sympathetic innervation of the heart. In Neurocardiology, ed. JA Armour & JL Ardell, pp. 77–94. Oxford University Press, New York.
- Randall WC, Armour JA, Geis WP & Lippincott DB (1972). Regional cardiac distribution of the sympathetic nerves. Fed Proc 31, 1199–1208.
- Recordati G, Genovesi S & Cerati D (1982). Renorenal reflexes in the rat elicited upon stimulation of renal chemoreceptors. J Auton Nerv Syst 6, 127–142.
- Recordati GM, Moss NG, Genovesi S & Rogenes PR (1980). Renal receptors in the rat sensitive to chemical alterations of their environment. Circ Res 46, 395–405.
- Recordati GM, Moss NG & Waselkov L (1978). Renal chemoreceptors in the rat. Circ Res 43, 534–543.
- Reddy MK, Patel KP & Schultz HD (2005). Differential role of the paraventricular nucleus of the hypothalamus in modulating the sympathoexcitatory component of peripheral and central chemoreflexes. Am J Physiol Regul Integr Comp Physiol 289, R789–R797.
- Remo BF, Preminger M, Bradfield J, Mittal S, Boyle N, Gupta A, Shivkumar K, Steinberg JS & Dickfeld T (2014). Safety and efficacy of renal denervation as a novel treatment of ventricular tachycardia storm in patients with cardiomyopathy. Heart Rhythm 11, 541–546.
- Rhee KS, Hsueh CH, Hellyer JA, Park HW, Lee YS, Garlie J, Onkka P, Doytchinova AT, Garner JB, Patel J, Chen LS, Fishbein MC, Everett T 4th, Lin SF & Chen PS (2015). Cervical vagal nerve stimulation activates the stellate ganglion in ambulatory dogs. Korean Circ J 45, 149–157.
- Ribeiro MJ, Sacramento JF, Gonzalez C, Guarino MP, Monteiro EC & Conde SV (2013). Carotid body denervation prevents the development of insulin resistance and hypertension induced by hypercaloric diets. Diabetes 62, 2905–2916.
- Rogenes PR (1982). Single-unit and multiunit analyses of renorenal reflexes elicited by stimulation of renal chemoreceptors in the rat. J Auton Nerv Syst 6, 143–156.
- Rowell LB, O'Leary DS & Kellogg DL Jr (1996). Chapter 17. Integration of cardiovascular control systems in dynamic exercise. In Handbook of Physiology, section 12, Exercise: Regulation and Integration of Multiple Systems, ed. LB Rowell & J Shepherd. pp. 770–838. Oxford Press, New York.
- Ruble SB, Hamann JJ, Gupta RC, Mishra S & Sabbah HN (2010). Chronic vagus nerve stimulation impacts biomarkers of heart failure in canines. J Am Coll Cardiol 55, A16.E153.
10.1016/S0735-1097(10)60154-4 Google Scholar
- Rudas L, Crossman AA, Morillo CA, Halliwill JR, Tahvanainen KU, Kuusela TA & Eckberg DL (1999). Human sympathetic and vagal baroreflex responses to sequential nitroprusside and phenylephrine. Am J Physiol 276, H1691–H1698.
- Sabbah HN (2011). Electrical vagus nerve stimulation for the treatment of chronic heart failure. Cleve Clin J Med 78 (Suppl. 1), S24–29.
- Sabbah HN, Gupta RC, Imai M, Irwin ED, Rastogi S, Rossing MA & Kieval RS (2011a). Chronic electrical stimulation of the carotid sinus baroreflex improves left ventricular function and promotes reversal of ventricular remodeling in dogs with advanced heart failure. Circ Heart Fail 4, 65–70.
- Sabbah HN, Ilsar I, Zaretsky A, Rastogi S, Wang M & Gupta RC (2011b). Vagus nerve stimulation in experimental heart failure. Heart Fail Rev 16, 171–178.
- Sakamoto K, Hosokawa K, Saku K, Sakamoto T, Tobushi T, Oga Y, Kishi T, Ide T & Sunagawa K (2016). Baroreflex failure increases the risk of pulmonary edema in conscious rats with normal left ventricular function. Am J Physiol Heart Circ Physiol 310, H199–H205.
- Sakamoto T, Kakino T, Sakamoto K, Tobushi T, Tanaka A, Saku K, Hosokawa K, Onitsuka K, Murayama Y, Tsutsumi T, Ide T & Sunagawa K (2015). Changes in vascular properties, not ventricular properties, predominantly contribute to baroreflex regulation of arterial pressure. Am J Physiol Heart Circ Physiol 308, H49–H58.
- Saku K, Kishi T, Sakamoto K, Hosokawa K, Sakamoto T, Murayama Y, Kakino T, Ikeda M, Ide T & Sunagawa K (2014). Afferent vagal nerve stimulation resets baroreflex neural arc and inhibits sympathetic nerve activity. Physiol Rep 2, e12136.
- Sala-Mercado JA, Hammond RL, Kim JK, Rossi NF, Stephenson LW & O'Leary DS (2006). Muscle metaboreflex control of ventricular contractility during dynamic exercise. Am J Physiol Heart Circ Physiol 290, H751–H757.
- Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG, Luft FC, Haller H, Menne J, Engeli S, Ceral J, Eckert S, Erglis A, Narkiewicz K, Philipp T & de Leeuw PW (2010). Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol 56, 1254–1258.
- Scherlag BJ, Patterson E & Po SS (2006). The neural basis of atrial fibrillation. J Electrocardiol 39, S180–183.
- Scherlag BJ & Po S (2006). The intrinsic cardiac nervous system and atrial fibrillation. Curr Opin Cardiol 21, 51–54.
- Schreihofer AM & Guyenet PG (2002). The baroreflex and beyond: control of sympathetic vasomotor tone by GABAergic neurons in the ventrolateral medulla. Clin Exp Pharmacol Physiol 29, 514–521.
- Schultz HD, Marcus NJ & Del Rio R (2013). Role of the carotid body in the pathophysiology of heart failure. Curr Hypertens Rep 15, 356–362.
- Schultz HD, Marcus NJ & Del Rio R (2015a). Mechanisms of carotid body chemoreflex dysfunction during heart failure. Exp Physiol 100, 124–129.
- Schultz HD, Marcus NJ & Del Rio R (2015b). Role of the carotid body chemoreflex in the pathophysiology of heart failure: A perspective from animal studies. Adv Exp Med Biol 860, 167–185.
- Schultz HD & Ustinova EE (1996). Cardiac vagal afferent stimulation by free radicals during ischaemia and reperfusion. Clin Exp Pharmacol Physiol 23, 700–708.
- Schwartz PJ (1984). Sympathetic imbalance and cardiac arrhythmias. In Nervous Control of Cardiovascular Functions, ed. WC Randall, pp. 225–252. Oxford University Press, New York.
- Schwartz PJ (2001). QT prolongation, sudden death, and sympathetic imbalance: the pendulum swings. J Cardiovasc Electrophysiol 12, 1074–1077.
- Schwartz PJ (2014). Cardiac sympathetic denervation to prevent life-threatening arrhythmias. Nat Rev Cardiol 11, 346–353.
- Schwartz PJ, Foreman RD, Stone HL & Brown AM (1976). Effect of dorsal root section on the arrhythmias associated with coronary occlusion. Am J Physiol 231, 923–928.
- Schwartz PJ, La Rovere MT & Vanoli E (1992). Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation 85, I77–91.
- Seagard JL, van Brederode JF, Dean C, Hopp FA, Gallenberg LA & Kampine JP (1990). Firing characteristics of single-fiber carotid sinus baroreceptors. Circ Res 66, 1499–1509.
- Sheldahl LM, Ebert TJ, Cox B & Tristani FE (1994). Effect of aerobic training on baroreflex regulation of cardiac and sympathetic function. J Appl Physiol (1985) 76, 158–165.
- Shen MJ, Shinohara T, Park HW, Frick K, Ice DS, Choi EK, Han S, Maruyama M, Sharma R, Shen C, Fishbein MC, Chen LS, Lopshire JC, Zipes DP, Lin SF & Chen PS (2011). Continuous low-level vagus nerve stimulation reduces stellate ganglion nerve activity and paroxysmal atrial tachyarrhythmias in ambulatory canines. Circulation 123, 2204–2212.
- Shen MJ & Zipes DP (2014). Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res 114, 1004–1021.
- Sheng X, Scherlag BJ, Yu L, Li S, Ali R, Zhang Y, Fu G, Nakagawa H, Jackman WM, Lazzara R & Po SS (2011). Prevention and reversal of atrial fibrillation inducibility and autonomic remodeling by low-level vagosympathetic nerve stimulation. J Am Coll Cardiol 57, 563–571.
- Sheriff DD, Augustyniak RA & O'Leary DS (1998). Muscle chemoreflex-induced increases in right atrial pressure. Am J Physiol 275, H767–H775.
- Shinlapawittayatorn K, Chinda K, Palee S, Surinkaew S, Kumfu S, Kumphune S, Chattipakorn S, KenKnight BH & Chattipakorn N (2014). Vagus nerve stimulation initiated late during ischemia, but not reperfusion, exerts cardioprotection via amelioration of cardiac mitochondrial dysfunction. Heart Rhythm 11, 2278–2287.
- Shinlapawittayatorn K, Chinda K, Palee S, Surinkaew S, Thunsiri K, Weerateerangkul P, Chattipakorn S, KenKnight BH & Chattipakorn N (2013). Low-amplitude, left vagus nerve stimulation significantly attenuates ventricular dysfunction and infarct size through prevention of mitochondrial dysfunction during acute ischemia-reperfusion injury. Heart Rhythm 10, 1700–1707.
- Shinohara T, Shen MJ, Han S, Maruyama M, Park HW, Fishbein MC, Shen C, Chen PS & Lin SF (2012). Heart failure decreases nerve activity in the right atrial ganglionated plexus. J Cardiovasc Electrophysiol 23, 404–412.
- Shivkumar K, Ajijola OA, Anand I, Armour JA, Chen P-S, Esler M, De Ferrari G, Fishbein MC, Goldberger JJ, Harper RM, Joyner MJ, Khalsa SS, Kumar R, Lane R, Mahajan A, Po S, Schwartz PJ, Somers VK, Valderrabano M, Vaseghi M & Zipes DP (2016). Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics. J Physiol 594, 3911–3954.
- Sleight P (2014). A historical perspective on peripheral reflex cardiovascular control from animals to man. Exp Physiol 99, 1017–1026.
- Smith SA, Mammen PP, Mitchell JH & Garry MG (2003). Role of the exercise pressor reflex in rats with dilated cardiomyopathy. Circulation 108, 1126–1132.
- Somers VK, Mark AL & Abboud FM (1991). Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J Clin Invest 87, 1953–1957.
- Somers VK, Mark AL, Zavala DC & Abboud FM (1989a). Influence of ventilation and hypocapnia on sympathetic nerve responses to hypoxia in normal humans. J Appl Physiol (1985) 67, 2095–2100.
- Somers VK, Mark AL, Zavala DC & Abboud FM (1989b). Contrasting effects of hypoxia and hypercapnia on ventilation and sympathetic activity in humans. J Appl Physiol (1985) 67, 2101–2106.
- Southerland EM, Gibbons DD, Smith SB, Sipe A, Williams CA, Beaumont E, Armour JA, Foreman RD & Ardell JL (2012). Activated cranial cervical cord neurons affect left ventricular infarct size and the potential for sudden cardiac death. Auton Neurosci 169, 34–42.
- Southerland EM, Milhorn DM, Foreman RD, Linderoth B, DeJongste MJ, Armour JA, Subramanian V, Singh M, Singh K & Ardell JL (2007). Preemptive, but not reactive, spinal cord stimulation mitigates transient ischemia-induced myocardial infarction via cardiac adrenergic neurons. Am J Physiol Heart Circ Physiol 292, H311–H317.
- Spina RJ, Ogawa T, Coggan AR, Holloszy JO & Ehsani AA (1992). Exercise training improves left ventricular contractile response to beta-adrenergic agonist. J Appl Physiol (1985) 72, 307–311.
- Staszewska-Barczak J (1983). Prostanoids and cardiac reflexes of sympathetic and vagal origin. Am J Cardiol 52, 36A–45A.
- Stavrakis S, Humphrey MB, Scherlag BJ, Hu Y, Jackman WM, Nakagawa H, Lockwood D, Lazzara R & Po SS (2015). Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J Am Coll Cardiol 65, 867–875.
- Steagall RJ, Sipe AL, Williams CA, Joyner WL & Singh K (2012). Substance P release in response to cardiac ischemia from rat thoracic spinal dorsal horn is mediated by TRPV1. Neuroscience 214, 106–119.
- Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C & Bunnett NW (2014). Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 94, 265–301.
- Stern JE, Sonner PM, Son SJ, Silva FC, Jackson K & Michelini LC (2012). Exercise training normalizes an increased neuronal excitability of NTS-projecting neurons of the hypothalamic paraventricular nucleus in hypertensive rats. J Neurophysiol 107, 2912–2921.
- Sun SY, Wang W & Schultz HD (2001). Activation of cardiac afferents by arachidonic acid: relative contributions of metabolic pathways. Am J Physiol Heart Circ Physiol 281, H93–H104.
- Sun SY, Wang W, Zucker IH & Schultz HD (1999). Enhanced activity of carotid body chemoreceptors in rabbits with heart failure: role of nitric oxide. J Appl Physiol (1985) 86, 1273–1282.
- Sunahara RK, Dessauer CW & Gilman AG (1996). Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol 36, 461–480.
- Sverrisdottir YB, Green AL, Aziz TZ, Bahuri NF, Hyam J, Basnayake SD & Paterson DJ (2014). Differentiated baroreflex modulation of sympathetic nerve activity during deep brain stimulation in humans. Hypertension 63, 1000–1010.
- Tallaj J, Wei CC, Hankes GH, Holland M, Rynders P, Dillon AR, Ardell JL, Armour JA, Lucchesi PA & Dell'Italia LJ (2003). β1-Adrenergic receptor blockade attenuates angiotensin II-mediated catecholamine release into the cardiac interstitium in mitral regurgitation. Circulation 108, 225–230.
- Thompson GW, Horackova M & Armour JA (2000). Chemotransduction properties of nodose ganglion cardiac afferent neurons in guinea pigs. Am J Physiol Regul Integr Comp Physiol 279, R433–R439.
- Thoren PN (1977). Characteristics of left ventricular receptors with nonmedullated vagal afferents in cats. Circ Res 40, 415–421.
- Thoren PN, Donald DE & Shepherd JT (1976). Role of heart and lung receptors with nonmedullated vagal afferents in circulatory control. Circ Res 38, 2–9.
- Thornton JM, Aziz T, Schlugman D & Paterson DJ (2002). Electrical stimulation of the midbrain increases heart rate and arterial blood pressure in awake humans. J Physiol 539, 615–621.
- Tracey KJ (2007). Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest 117, 289–296.
- Tse HF, Turner S, Sanders P, Okuyama Y, Fujiu K, Cheung CW, Russo M, Green MD, Yiu KH, Chen P, Shuto C, Lau EO & Siu CW (2015). Thoracic spinal cord stimulation for heart failure as a restorative treatment (SCS HEART study): First-in-man experience. Heart Rhythm 12, 588–595.
- Uchida Y & Murao S (1974). Bradykinin-induced excitation of afferent cardiac sympathetic nerve fibers. Jpn Heart J 15, 84–91.
- Uchida Y & Murao S (1975). Acid-induced excitation of afferent cardiac sympathetic nerve fibers. Am J Physiol 228, 27–33.
- Ueda H, Uchida Y & Kamisaka K (1967). Mechanism of the reflex depressor effect by the kidney in dog. Jpn Heart J 8, 597–606.
- Ulasova E, Gladden JD, Chen Y, Zheng J, Pat B, Bradley W, Powell P, Zmijewski JW, Zelickson BR, Ballinger SW, Darley-Usmar V & Dell'Italia LJ (2011). Loss of interstitial collagen causes structural and functional alterations of cardiomyocyte subsarcolemmal mitochondria in acute volume overload. J Mol Cell Cardiol 50, 147–156.
- Ustinova EE & Schultz HD (1994a). Activation of cardiac vagal afferents by oxygen-derived free radicals in rats. Circ Res 74, 895–903.
- Ustinova EE & Schultz HD (1994b). Activation of cardiac vagal afferents in ischemia and reperfusion. Prostaglandins versus oxygen-derived free radicals. Circ Res 74, 904–911.
- Vance WH & Bowker RC (1983). Spinal origins of cardiac afferents from the region of the left anterior descending artery. Brain Res 258, 96–100.
- Vandecasteele G, Eschenhagen T, Scholz H, Stein B, Verde I & Fischmeister R (1999). Muscarinic and β-adrenergic regulation of heart rate, force of contraction and calcium current is preserved in mice lacking endothelial nitric oxide synthase. Nat Med 5, 331–334.
- Vaseghi M, Ajijola O, Mahajan A & Shivkumar K (2013). Sympathetic innervations, denervation, and cardiac arrhythmias. In Cardiac Electrophysiology: From Cell to Bedside, ed. DP Zipes & J Jalifa, pp. 391–403. Saunders Elsevier, Philadelphia.
- Vaseghi M, Gima J, Kanaan C, Ajijola OA, Marmureanu A, Mahajan A & Shivkumar K (2014). Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: intermediate and long-term follow-up. Heart Rhythm 11, 360–366.
- Vaseghi M, Lellouche N, Ritter H, Fonarow GC, Patel JK, Moriguchi J, Fishbein MC, Kobashigawa JA & Shivkumar K (2009). Mode and mechanisms of death after orthotopic heart transplantation. Heart Rhythm 6, 503–509.
- Vaseghi M, Lux RL, Mahajan A & Shivkumar K (2012). Sympathetic stimulation increases dispersion of repolarization in humans with myocardial infarction. Am J Physiol Heart Circ Physiol 302, H1838–H1846.
- Vaseghi M & Shivkumar K (2008). The role of the autonomic nervous system in sudden cardiac death. Prog Cardiovasc Dis 50, 404–419.
- Vaseghi M & Shivkumar K (2012). Neuraxial modulation for ventricular arrhythmias: a new hope. Heart Rhythm 9, 1888–1889.
- Villarreal D, Freeman RH, Johnson RA & Simmons JC (1994). Effects of renal denervation on postprandial sodium excretion in experimental heart failure. Am J Physiol 266, R1599–R1604.
- Waldmann M, Thompson GW, Kember GC, Ardell JL & Armour JA (2006). Stochastic behavior of atrial and ventricular intrinsic cardiac neurons. J Appl Physiol (1985) 101, 413–419.
- Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, Al-Abed Y, Wang H, Metz C, Miller EJ, Tracey KJ & Ulloa L (2004). Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med 10, 1216–1221.
- Wang HJ, Wang W, Cornish KG, Rozanski GJ & Zucker IH (2014). Cardiac sympathetic afferent denervation attenuates cardiac remodeling and improves cardiovascular dysfunction in rats with heart failure. Hypertension 64, 745–755.
- Wang S, Zhou X, Wang Z, Huang B, Zhou L, Chen M, Yu L & Jiang H (2015). DEFEAT-HF Trial: The potential causes for the negative result. Int J Cardiol 191, 271–272.
- Wang W & Zucker IH (1996). Cardiac sympathetic afferent reflex in dogs with congestive heart failure. Am J Physiol 271, R751–R756.
- Wang WZ, Gao L, Pan YX, Zucker IH & Wang W (2006). Differential effects of cardiac sympathetic afferent stimulation on neurons in the nucleus tractus solitarius. Neurosci Lett 409, 146–150.
- Wang WZ, Gao L, Pan YX, Zucker IH & Wang W (2007). AT1 receptors in the nucleus tractus solitarii mediate the interaction between the baroreflex and the cardiac sympathetic afferent reflex in anesthetized rats. Am J Physiol Regul Integr Comp Physiol 292, R1137–R1145.
- Wang WZ, Gao L, Wang HJ, Zucker IH & Wang W (2008). Interaction between cardiac sympathetic afferent reflex and chemoreflex is mediated by the NTS AT1 receptors in heart failure. Am J Physiol Heart Circ Physiol 295, H1216–H1226.
- Weerasooriya R, Khairy P, Litalien J, Macle L, Hocini M, Sacher F, Lellouche N, Knecht S, Wright M, Nault I, Miyazaki S, Scavee C, Clementy J, Haissaguerre M & Jais P (2011). Catheter ablation for atrial fibrillation: are results maintained at 5 years of follow-up? J Am Coll Cardiol 57, 160–166.
- Wei CC, Chen Y, Powell LC, Zheng J, Shi K, Bradley WE, Powell PC, Ahmad S, Ferrario CM & Dell'Italia LJ (2012). Cardiac kallikrein-kinin system is upregulated in chronic volume overload and mediates an inflammatory induced collagen loss. PLoS One 7, e40110.
- White CB, Roberts AM & Joshua IG (1993). Arteriolar dilation mediated by capsaicin and calcitonin gene-related peptide in rats. Am J Physiol 265, H1411–H1415.
- Williamson JW, Fadel PJ & Mitchell JH (2006). New insights into central cardiovascular control during exercise in humans: a central command update. Exp Physiol 91, 51–58.
- Woolf CJ & Salter MW (2000). Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769.
- Wu ZZ & Pan HL (2007). Role of TRPV1 and intracellular Ca2+ in excitation of cardiac sensory neurons by bradykinin. Am J Physiol Regul Integr Comp Physiol 293, R276–R283.
- Wyss CR, Ardell JL, Scher AM & Rowell LB (1983). Cardiovascular responses to graded reductions in hindlimb perfusion in exercising dogs. Am J Physiol 245, H481–H486.
- Wyss JM & Donovan MK (1984). A direct projection from the kidney to the brainstem. Brain Res 298, 130–134.
- Xu B, Zheng H, Liu X & Patel KP (2015). Activation of afferent renal nerves modulates RVLM-projecting PVN neurons. Am J Physiol Heart Circ Physiol 308, H1103–H1111.
- Xu B, Zheng H & Patel KP (2013). Relative contributions of the thalamus and the paraventricular nucleus of the hypothalamus to the cardiac sympathetic afferent reflex. Am J Physiol Regul Integr Comp Physiol 305, R50–R59.
- Yamakawa K, Howard-Quijano K, Zhou W, Rajendran PS, Yagishita D, Vaseghi M, Ajijola OA, Armour JA, Shivkumar K, Ardell JL & Mahajan A (2016). Central vs. peripheral neuraxial sympathetic control of porcine ventricular electrophysiology. Am J Physiol Regul Integr Comp Physiol 310, R414–R421.
- Yamakawa K, Rajendran PS, Takamiya T, Yagishita D, So EL, Mahajan A, Shivkumar K & Vaseghi M (2015). Vagal nerve stimulation activates vagal afferent fibers that reduce cardiac efferent parasympathetic effects. Am J Physiol Heart Circ Physiol 309, H1579–H1590.
- Yamakawa K, So EL, Rajendran PS, Hoang JD, Makkar N, Mahajan A, Shivkumar K & Vaseghi M (2014). Electrophysiological effects of right and left vagal nerve stimulation on the ventricular myocardium. Am J Physiol Heart Circ Physiol 307, H722–H731.
- Yaoita H, Sato E, Kawaguchi M, Saito T, Maehara K & Maruyama Y (1994). Nonadrenergic noncholinergic nerves regulate basal coronary flow via release of capsaicin-sensitive neuropeptides in the rat heart. Circ Res 75, 780–788.
- Yu L, Scherlag BJ, Li S, Sheng X, Lu Z, Nakagawa H, Zhang Y, Jackman WM, Lazzara R, Jiang H & Po SS (2011). Low-level vagosympathetic nerve stimulation inhibits atrial fibrillation inducibility: direct evidence by neural recordings from intrinsic cardiac ganglia. J Cardiovasc Electrophysiol 22, 455–463.
- Yuan BX, Ardell JL, Hopkins DA, Losier AM & Armour JA (1994). Gross and microscopic anatomy of the canine intrinsic cardiac nervous system. Anat Rec 239, 75–87.
- Zannad F, De Ferrari GM, Tuinenburg AE, Wright D, Brugada J, Butter C, Klein H, Stolen C, Meyer S, Stein KM, Ramuzat A, Schubert B, Daum D, Neuzil P, Botman C, Castel MA, D'Onofrio A, Solomon SD, Wold N & Ruble SB (2015). Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur Heart J 36, 425–433.
- Zhang TC, Janik JJ & Grill WM (2014). Mechanisms and models of spinal cord stimulation for the treatment of neuropathic pain. Brain Res 1569, 19–31.
- Zhang Y, Ilsar I, Sabbah HN, Ben David T & Mazgalev TN (2009a). Relationship between right cervical vagus nerve stimulation and atrial fibrillation inducibility: therapeutic intensities do not increase arrhythmogenesis. Heart Rhythm 6, 244–250.
- Zhang Y & Mazgalev TN (2011). Arrhythmias and vagus nerve stimulation. Heart Fail Rev 16, 147–161.
- Zhang Y, Popovic ZB, Bibevski S, Fakhry I, Sica DA, Van Wagoner DR & Mazgalev TN (2009b). Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail 2, 692–699.
- Zhang Y, Scherlag BJ, Lu Z, Niu GD, Yamanashi WS, Hogan C, Fields J, Ghias M, Lazzara R, Jackman WM & Po S (2009c). Comparison of atrial fibrillation inducibility by electrical stimulation of either the extrinsic or the intrinsic autonomic nervous systems. J Interv Card Electrophysiol 24, 5–10.
- Zhao Q, Huang H, Wang X, Wang X, Dai Z, Wan P, Guo Z, Yu S, Tang Y & Huang C (2014). Changes of serum neurohormone after renal sympathetic denervation in dogs with pacing-induced heart failure. Int J Clin Exp Med 7, 4024–4030.
- Zhou S, Chen LS, Miyauchi Y, Miyauchi M, Kar S, Kangavari S, Fishbein MC, Sharifi B & Chen PS (2004). Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res 95, 76–83.
- Zhu GQ, Gao L, Li Y, Patel KP, Zucker IH & Wang W (2004a). AT1 receptor mRNA antisense normalizes enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure. Am J Physiol Heart Circ Physiol 287, H1828–H1835.
- Zhu GQ, Gao L, Patel KP, Zucker IH & Wang W (2004b). ANG II in the paraventricular nucleus potentiates the cardiac sympathetic afferent reflex in rats with heart failure. J Appl Physiol (1985) 97, 1746–1754.
- Zhu GQ, Patel KP, Zucker IH & Wang W (2002). Microinjection of ANG II into paraventricular nucleus enhances cardiac sympathetic afferent reflex in rats. Am J Physiol Heart Circ Physiol 282, H2039–H2045.
- Zipes DP (2015). Antiarrhythmic therapy in 2014: Contemporary approaches to treating arrhythmias. Nat Rev Cardiol 12, 68–69.
- Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chaitman B, Fromer M, Gregoratos G, Klein G, Moss AJ, Myerburg RJ, Priori SG, Quinones MA, Roden DM, Silka MJ, Tracy C, Smith SC Jr, Jacobs AK, Adams CD, Antman EM, Anderson JL, Hunt SA, Halperin JL, Nishimura R, Ornato JP, Page RL, Riegel B, Priori SG, Blanc JJ, Budaj A, Camm AJ, Dean V, Deckers JW, Despres C, Dickstein K, Lekakis J, McGregor K, Metra M, Morais J, Osterspey A, Tamargo JL & Zamorano JL; American College of Cardiology; American Heart Association Task Force; European Society of Cardiology Committee for Practice Guidelines (2006). ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death). J Am Coll Cardiol 48, e247–346.
- Zipes DP, Neuzil P, Theres H, Caraway D, Mann DL, Mannheimer C, Van Buren P, Linde C, Linderoth B, Kueffer F, Sarazin SA & DeJongste MJ; DEFEAT-HF Trial Investigators (2016). Determining the feasibility of spinal cord neuromodulation for the treatment of chronic systolic heart failure: The DEFEAT-HF study. JACC Heart Fail 4, 129–136.
- Zucker IH & Gilmore JP (1991). Reflex Control of the Circulation. CRC Press, Boca Raton.
- Zucker IH, Hackley JF, Cornish KG, Hiser BA, Anderson NR, Kieval R, Irwin ED, Serdar DJ, Peuler JD & Rossing MA (2007). Chronic baroreceptor activation enhances survival in dogs with pacing-induced heart failure. Hypertension 50, 904–910.
- Zucker IH, Patel KP & Schultz HD (2012). Neurohumoral stimulation. Heart Fail Clin 8, 87–99.
- Zucker IH, Wang W, Brandle E & Schultz HD (1996). Baroreflex and cardiac reflex control of the circulation in pacing-induced heart failure. In Pathophysiology of Tachycardia-Induced Heart Failure, ed. FG Spinale, pp. 193–226. Futura Publishing, Armonk, New York.
- Zucker IH, Wang W, Brandle M, Schultz HD & Patel KP (1995a). Neural regulation of sympathetic nerve activity in heart failure. Prog Cardiovasc Dis 37, 397–414.
- Zucker IH, Wang W, Pliquett RU, Liu JL & Patel KP (2001). The regulation of sympathetic outflow in heart failure. The roles of angiotensin II, nitric oxide, and exercise training. Ann NY Acad Sci 940, 431–443.
- Zucker IH, Wang W & Schultz HD (1995b). Cardiac receptor activity in heart failure: implications for the control of sympathetic nervous outflow. Adv Exp Med Biol 381, 109–124.